观察图象,回答问题
(1)函数y=3(x-1)2的图象与y=3x2的图象有什么关系?它是轴对称图形吗?它的对称轴和顶点坐标分别是什么?
(2)x取哪些值时,函数y=3(x-1)2的值随x值的增大而增大?x取哪些值时,函数y=3(x-1)2的值随x的增大而减少?
我思考,我进步
在同一坐标系中作出二次函数y=3x²,y=3(x-1)2和y=3(x-1)2+2的图象.
二次函数y=3x²,y=3(x-1)2和y=3(x-1)2+2的图象有什么关系?它们的开口方向,对称轴和顶点坐标分别是什么?作图看一看.
在同一坐标系中作出二次函数y=-3(x-1)2+2,y=-3(x-1)2-2,y=-3x²和y=-3(x-1)2的图象
二次函数y=-3(x-1)2+2与y=-3(x-1)2-2和y=-3x²,y=-3(x-1)2的图象有什么关系?它们是轴对称图形吗?它的开口方向、对称轴和顶点坐标分别是什么?当x取哪些值时,y的值随x值的增大而增大?当x取哪些值时,y的值随x值的增大而减小?
... ... ...
二次函数y=a(x-h)²+k与y=ax²的关系
一般地,由y=ax²的图象便可得到二次函数y=a(x-h)²+k的图象:y=a(x-h)²+k(a≠0) 的图象可以看成y=ax²的图象先沿x轴整体左(右)平移|h|个单位(当h>0时,向右平移;当h<0时,向左平移),再沿对称轴整体上(下)平移|k|个单位 (当k>0时向上平移;当k<0时,向下平移)得到的.
因此,二次函数y=a(x-h)²+k的图象是一条抛物线,它的开口方向、对称轴和顶点坐标与a,h,k的值有关.
... ... ...
二次函数y=a(x-h)²+k与y=ax²的关系
1.相同点: (1)形状相同(图像都是抛物线,开口方向相同).
(2)都是轴对称图形.
(3)都有最(大或小)值.
(4)a>0时, 开口向上,在对称轴左侧,y都随x的增大而减小,在对称轴右侧,y都随 x的增大而增大. a<0时,开口向下,在对称轴左侧,y都随x的增大而增大,在对称轴右侧,y都随 x的增大而减小 .
2.不同点: 只是位置不同
(1)顶点不同:分别是(h,k)和(0,0).
(2)对称轴不同:分别是直线x= h和y轴.
(3)最值不同:分别是k和0.
3.联系: y=a(x-h)²+k(a≠0) 的图象可以看成y=ax²的图象先沿x轴整体左(右)平移|h|个单位(当h>0时,向右平移;当h<0时,向左平移),再沿对称轴整体上(下)平移|k|个单位 (当k>0时向上平移;当k<0时,向下平移)得到的.
... ... ...
《二次函数的图像与性质》PPT课件2 复习目标: 1、复习掌握二次函数的图象与性质。 2、熟练求二次函数的解析式。 3、掌握二次函数与一元二次方程及一元二次不等式的关系。 课前热身(..
《二次函数的图像与性质》PPT课件 学习目标 1、能画出y=ax+k;y=a(x-h)的图象,并能根据图象探索出它的性质。 2、能灵活应用y=ax+k;y=a(x-h)的性质解决相关问题。 温故知新: 二次函..