《幂函数》函数的概念与性质PPT课件
第一部分内容:学习目标
了解幂函数的概念,会求幂函数的解析式
掌握五种幂函数y=x,y=x2,y=x3,y=x12,y=x-1的图象特点
借助五种幂函数的图象,掌握五种幂函数的性质,并会应用
... ... ...
幂函数PPT,第二部分内容:自主学习
预习教材P89-P91,并思考以下问题:
1.幂函数的定义是什么?
2.幂函数的解析式有什么特点?
3.幂函数的图象有什么特点?
4.幂函数的性质有哪些?
1.幂函数的概念
一般地,函数y=_____叫做幂函数,其中_____是自变量,_____是常数.
■名师点拨
幂函数的特征
(1)xα的系数为1.
(2)xα的底数是自变量.
(3)xα的指数为常数.
只有同时满足这三个条件,才是幂函数.对于形如y=(2x)α,y=2x5,y=xα+6等函数都不是幂函数.
2.幂函数的图象与性质
(1)五种常见幂函数的图象
(2)五类幂函数的性质
判断正误(正确的打“√”,错误的打“×”)
(1)幂函数的图象都过点(0,0),(1,1).( )
(2)幂函数的图象一定不能出现在第四象限.( )
(3)当幂指数α取1,3,12时,幂函数y=xα是增函数.( )
(4)当幂指数α=-1时,幂函数y=xα在定义域上是减函数. ( )
下列函数为幂函数的是( )
A.y=2x3 B.y=2x2-1
C.y=1xD.y=3x2
在下列四个图形中,y=x-12的图象大致是( )
若y=mxα+(2n-4)是幂函数,则m+n=________.
... ... ...
幂函数PPT,第三部分内容:讲练互动
幂函数的概念
(1)下列函数:①y=x3;②y=12x;③y=4x2;④y=x5+1;⑤y=(x-1)2;⑥y=x;⑦y=ax(a>1).其中幂函数的个数为( )
A.1 B.2
C.3D.4
(2)若函数y=(m2+2m-2)xm为幂函数且在第一象限为增函数,则m的值为( )
A.1B.-3
C.-1D.3
【解析】(1)②⑦中自变量x在指数的位置,③中系数不是1,④中解析式为多项式,⑤中底数不是自变量本身,所以只有①⑥是幂函数.
(2)因为函数y=(m2+2m-2)xm为幂函数且在第一象限为增函数,所以m2+2m-2=1,m>0,所以m=1.
判断一个函数是否为幂函数的方法
判断一个函数是否为幂函数的依据是该函数是否为y=xα(α为常数)的形式,即函数的解析式为一个幂的形式,且需满足:
(1)指数为常数;
(2)底数为自变量;
(3)系数为1.
幂函数的图象及应用
已知幂函数f(x)=xα的图象过点P2,14,试画出f(x)的图象并指出该函数的定义域与单调区间.
【解】因为f(x)=xα的图象过点P2,14,
所以f(2)=14,即2α=14,
得α=-2,即f(x)=x-2,f(x)的图象如图所示,定义域为(-∞,0)∪(0,+∞),单调减区间为(0,+∞),单调增区间为(-∞,0).
解决幂函数图象问题应把握的原则
(1)依据图象高低判断幂指数大小,相关结论为:①在(0,1)上,指数越大,幂函数图象越靠近x轴(简记为指大图低);②在(1,+∞)上,指数越大,幂函数图象越远离x轴(简记为指大图高).
(2)依据图象确定幂指数α与0,1的大小关系,即根据幂函数在第一象限内的图象(类似于y=x-1或y=x12或y=x3)来判断.
... ... ...
幂函数PPT,第四部分内容:达标反馈
1.已知函数f(x)=(a2-a-1)x1a-2为幂函数,则实数a的值为( )
A.-1或2B.-2或1
C.-1D.1
2.幂函数y=f(x)的图象经过点(3,3),则f(x)( )
A.是偶函数,且在(0,+∞)上是增函数
B.是偶函数,且在(0,+∞)上是减函数
C.是奇函数,且在(0,+∞)上是减函数
D.既不是奇函数,也不是偶函数,且在(0,+∞)上是增函数
3.函数y=x-3在区间[-4,-2]上的最小值是________.
4.已知y=(m2+2m-2)xm2-1+2n-3是定义域为R的幂函数,求m,n的值.
《章末复习提升课》指数函数、对数函数与幂函数PPT课件 综合提高 指数、对数的运算 例1 化简:(1)(8) -23(3102)92105; (2)2log32-log3329+log38-25log53. 规律方法 指数、对数的..
《函数的应用》指数函数、对数函数与幂函数PPT课件 第一部分内容:考点 指数、对数函数模型在实际问题中的应用 根据实际问题建立函数模型 学习目标 会利用已知函数模型解决实际问题 ..
《增长速度的比较》指数函数、对数函数与幂函数PPT课件 第一部分内容:学习目标 了解平均变化率描述增长速度的概念 了解在实际生活中不同增长规律的函数模型 ... ... ... 增长速度的..
发布于:2020-07-17 10:15:28
0
必修一A版
《函数的基本性质》函数的概念与性质PPT(第4课时函数奇偶性的应用)
第一部分内容:学习目标
会利用函数的奇偶性求函数的解析式
能运用函数的单调性和奇偶性解决比较大小、求最值、解不等式等综合问题
... ... ...
函数的基本性质PPT,第二部分内容:讲练互动
利用奇偶性求函数的解析式
若函数f(x)是定义在R上的奇函数,当x>0时,f(x)=x2-2x-1,求函数f(x)的解析式.
【解】当x<0时,-x>0,
f(-x)=(-x)2-2(-x)-1=x2+2x-1,
因为函数f(x)是奇函数,
所以f(x)=-f(-x),
所以x<0时,f(x)=-x2-2x+1,
故f(x)=x2-2x-1(x>0),0(x=0),-x2-2x+1(x<0).
1.(变问法)在本例条件下,求f(-3)的值.
解:因为函数f(x)是定义在R上的奇函数,所以f(-3)=-f(3)=-(32-2×3-1)=-2.
2.(变条件)将本例中的“奇函数”改为“偶函数”,其他条件不变,求当x<0时,函数f(x)的解析式.
解:当x<0时,-x>0,
f(-x)=(-x)2-2(-x)-1=x2+2x-1,
因为函数f(x)是偶函数,
所以f(x)=f(-x),
所以f(x)=x2+2x-1,
即x<0时,f(x)=x2+2x-1.
利用奇偶性求函数解析式的思路
(1)“求谁设谁”,即在哪个区间求解析式,x就设在哪个区间内.
(2)利用已知区间的解析式代入.
(3)利用f(x)的奇偶性写出-f(x)或f(-x),从而解出f(x).
1.设f(x)是偶函数,g(x)是奇函数,且f(x)+g(x)=x2+2x,求函数f(x),g(x)的解析式.
解:因为f(x)是偶函数,g(x)是奇函数,
所以f(-x)=f(x),g(-x)=-g(x),
由f(x)+g(x)=2x+x2.①
用-x代替x得f(-x)+g(-x)=-2x+(-x)2,
所以f(x)-g(x)=-2x+x2,②
(①+②)÷2,得f(x)=x2.
(①-②)÷2,得g(x)=2x.
2.已知函数f(x)是定义域为R的偶函数,且当x≥0时,f(x)=-x2+2x.
(1)求出函数f(x)在R上的解析式;
(2)画出函数f(x)的图象;
(3)根据图象,写出函数f(x)的单调递减区间及值域.
函数的奇偶性与单调性的综合问题
角度一 比较大小问题
设偶函数f(x)的定义域为R,当x∈[0,+∞)时,f(x)是增函数,则f(-2),f(π),f(-3)的大小关系是( )
A.f(π)>f(-3)>f(-2)
B.f(π)>f(-2)>f(-3)
C.f(π) D.f(π) 角度二 解不等式 已知定义在(-1,1)上的函数f(x)=xx2+1. (1)试判断f(x)的奇偶性及在(-1,1)上的单调性; (2)解不等式f(t-1)+f(2t)<0. 奇偶性与单调性综合问题的两种类型 (1)比较大小 ①自变量在同一单调区间上,直接利用函数的单调性比较大小; ②自变量不在同一单调区间上,需利用函数的奇偶性把自变量转化到同一单调区间上,然后利用单调性比较大小. (2)解不等式 ①利用已知条件,结合函数的奇偶性,把已知不等式转化为f(x1)<f(x2)或f(x1)>f(x2)的形式; ②根据奇函数在对称区间上的单调性一致,偶函数在对称区间上的单调性相反,脱掉不等式中的“f”转化为简单不等式(组)求解. ... ... ... 函数的基本性质PPT,第三部分内容:达标反馈 1.下列函数中,既是偶函数又在(0,+∞)上单调递增的函数是( ) A.y=x3B.y=|x|+1 C.y=-x2+1 D.y=-2x 解析:选B.对于函数y=|x|+1, f(-x)=|-x|+1=|x|+1=f(x), 所以y=|x|+1是偶函数,当x>0时,y=x+1, 所以在(0,+∞)上单调递增;另外函数y=x3不是偶函数; y=-x2+1在(0,+∞)上单调递减;y=-2x不是偶函数.故选B. 2.如果奇函数f(x)在区间[1,5]上是减函数,且最小值为3,那么f(x)在区间[-5,-1]上是( ) A.增函数且最小值为3 B.增函数且最大值为3 C.减函数且最小值为-3 D.减函数且最大值为-3 3.设奇函数f(x)在(0,+∞)上为减函数,且f(1)=0,则不等式f(x)-f(-x)x<0的解集为( ) A.(-1,0)∪(1,+∞) B.(-∞,-1)∪(0,1) C.(-∞,-1)∪(1,+∞) D.(-1,0)∪(0,1) ... ... ... 《函数的奇偶性》函数的概念与性质PPT(第2课时奇偶性的应用) 第一部分内容:学 习 目 标 1.会根据函数奇偶性求函数值或解析式. 2.能利用函数的奇偶性与单调性分析、解决较简单的问.. 《函数的奇偶性》函数的概念与性质PPT(第2课时奇偶性的应用) 第一部分内容:学 习 目 标 1.会根据函数奇偶性求函数值或解析式. 2.能利用函数的奇偶性与单调性分析、解决较简单的问.. 《函数的奇偶性》函数的概念与性质PPT(第1课时奇偶性的概念) 第一部分内容:学 习 目 标 1.理解奇函数、偶函数的定义. 2.了解奇函数、偶函数图像的特征. 3.掌握判断函数奇偶性的..
发布于:2020-05-03 14:11:50
0
必修一A版
《函数的基本性质》函数的概念与性质PPT(第3课时函数奇偶性的概念)
第一部分内容:学习目标
结合具体函数,了解函数奇偶性的含义,掌握判断函数奇偶性的方法
了解函数奇偶性与函数图象对称性之间的关系
会利用函数的奇偶性解决简单问题
... ... ...
函数的基本性质PPT,第二部分内容:自主学习
预习教材P82-P84,并思考以下问题:
1.奇函数与偶函数的定义是什么?
2.奇、偶函数的定义域有什么特点?
3.奇、偶函数的图象有什么特征?
1.偶函数
(1)定义:一般地,设函数f(x)的定义域为I,如果∀x∈I,都有_________,且__________________,那么函数f(x)就叫做偶函数.
(2)图象特征:图象关于_________对称.
2.奇函数
(1)定义:一般地,设函数f(x)的定义域为I,如果∀x∈I,都有_________,且________________,那么函数f(x)就叫做奇函数.
(2)图象特征:图象关于_________对称.
■名师点拨
(1)奇、偶函数定义域的特点
由于f(x)和f(-x)须同时有意义,所以奇、偶函数的定义域关于原点对称.
(2)奇、偶函数的对应关系的特点
①奇函数有f(-x)=-f(x)⇔f(-x)+f(x)=0⇔f(-x)f(x)=-1(f(x)≠0);
②偶函数有f(-x)=f(x)⇔f(-x)-f(x)=0⇔f(-x)f(x)=1(f(x)≠0).
(3)函数奇偶性的三个关注点
①若奇函数在原点处有定义,则必有f(0)=0.有时可以用这个结论来否定一个函数为奇函数;
②既是奇函数又是偶函数的函数只有一种类型,即f(x)=0,x∈I,其中定义域I是关于原点对称的非空集合;
③函数根据奇偶性可分为奇函数、偶函数、既奇又偶函数、非奇非偶函数.
判断正误(正确的打“√”,错误的打“×”)
(1)奇、偶函数的定义域都关于原点对称.( )
(2)函数f(x)=x2的图象关于原点对称.( )
(3)对于定义在R上的函数f(x),若f(-1)=-f(1),则函数f(x)一定是奇函数.( )
(4)若f(x)是定义在R上的奇函数,则f(-x)+f(x)=0.( )
下列函数为奇函数的是( )
A.y=|x|B.y=3-x
C.y=1x3D.y=-x2+14
若函数y=f(x),x∈[-2,a]是偶函数,则a的值为( )
A.-2B.2
C.0D.不能确定
... ... ...
函数的基本性质PPT,第三部分内容:讲练互动
函数奇偶性的判断
判断下列函数的奇偶性:
(1)f(x)=|x+1|-|x-1|;
(2)f(x)=x2-1+ 1-x2;
(3)f(x)=1-x2x;
(4)f(x)=x+1,x>0,-x+1,x<0.
判断函数奇偶性的两种方法
(1)定义法
(2)图象法
[注意]对于分段函数奇偶性的判断,应分段讨论,要注意根据x的范围取相应的函数解析式.
奇、偶函数的图象
已知函数y=f(x)是定义在R上的偶函数,且当x≤0时,f(x)=x2+2x.现已画出函数f(x)在y轴左侧的图象,如图所示.
(1)请补出完整函数y=f(x)的图象;
(2)根据图象写出函数y=f(x)的递增区间;
(3)根据图象写出使f(x)<0的x的取值集合.
巧用奇偶性作函数图象的步骤
(1)确定函数的奇偶性.
(2)作出函数在[0,+∞)(或(-∞,0])上对应的图象.
(3)根据奇(偶)函数关于原点(y轴)对称得出在(-∞,0](或[0,+∞))上对应的函数图象.
[注意]作对称图象时,可以先从点的对称出发,点(x0,y0)关于原点的对称点为(-x0,-y0),关于y轴的对称点为(-x0,y0).
... ... ...
函数的基本性质PPT,第四部分内容:达标反馈
1.下列函数是偶函数的是( )
A.y=x
B.y=2x2-3
C.y=x
D.y=x2,x∈(-1,1]
2.函数f(x)=1x-x的图象关于( )
A.y轴对称
B.直线y=-x对称
C.坐标原点对称
D.直线y=x对称
3.已知函数f(x)为R上的奇函数,且当x>0时,f(x)=x2+1x,则f(-1)=________.
4.根据题中函数的奇偶性及所给部分图象,作出函数在y轴另一侧的图象,并解决问题:
(1)如图①是奇函数y=f(x)的部分图象,求f(-4)•f(-2);
(2)如图②是偶函数y=f(x)的部分图象,比较f(1)与f(3)的大小.
... ... ...
《函数的奇偶性》函数的概念与性质PPT(第2课时奇偶性的应用) 第一部分内容:学 习 目 标 1.会根据函数奇偶性求函数值或解析式. 2.能利用函数的奇偶性与单调性分析、解决较简单的问..
《函数的奇偶性》函数的概念与性质PPT(第2课时奇偶性的应用) 第一部分内容:学 习 目 标 1.会根据函数奇偶性求函数值或解析式. 2.能利用函数的奇偶性与单调性分析、解决较简单的问..
《函数的奇偶性》函数的概念与性质PPT(第1课时奇偶性的概念) 第一部分内容:学 习 目 标 1.理解奇函数、偶函数的定义. 2.了解奇函数、偶函数图像的特征. 3.掌握判断函数奇偶性的..
发布于:2020-05-03 14:11:49
0
必修一A版
《函数的基本性质》函数的概念与性质PPT(第2课时函数的最大值、最小值)
第一部分内容:学习目标
理解函数的最大(小)值及其几何意义,并能借助图象求函数的最大(小)值
会借助函数的单调性求最值
能利用函数的最值解决有关的简单实际问题
... ... ...
函数的基本性质PPT,第二部分内容:自主学习
预习教材P79-P81,并思考以下问题:
1.从函数图象可以看出,函数最大(小)值的几何意义是什么?
2.函数最大值、最小值的定义是什么?
1.函数的最大值
一般地,设函数y=f(x)的定义域为I,如果存在实数M满足:
(1)∀x∈I,都有__________;
(2)∃x0∈I,使得__________.
那么,我们称M是函数y=f(x)的最大值.
2.函数的最小值
一般地,设函数y=f(x)的定义域为I,如果存在实数M满足:
(1)∀x∈I,都有__________;
(2)∃x0∈I,使得__________.
那么,我们称M是函数y=f(x)的最小值.
■名师点拨
函数最大值和最小值定义中的两个关键词
(1)∃(存在)
M首先是一个函数值,它是值域中的一个元素,如函数y=x2(x∈R)的最小值是0,有f(0)=0.
(2)∀(任意)
最大(小)值定义中的∀(任意)是说对于定义域内的每一个值都必须满足不等式,即对于定义域内的全部元素,都有f(x)≤M(f(x)≥M)成立,也就是说,函数y=f(x)的图象不能位于直线y=M的上(下)方.
判断正误(正确的打“√”,错误的打“×”)
(1)任何函数都有最大值或最小值.( )
(2)函数的最小值一定比最大值小.( )
(3)若函数f(x)≤1恒成立,则f(x)的最大值为1.( )
函数f(x)在[-2,2]上的图象如图所示,则此函数的最小值、最大值分别是( )
A.-1,0 B.0,2
C.-1,2 D.12,2
函数f(x)=1x在[1,+∞)上( )
A.有最大值无最小值
B.有最小值无最大值
C.有最大值也有最小值
D.无最大值也无最小值
... ... ...
函数的基本性质PPT,第三部分内容:讲练互动
图象法求函数的最值
已知函数f(x)=-2x,x∈(-∞,0),x2+2x-1,x∈[0,+∞).
(1)画出函数的图象并写出函数的单调区间;
(2)根据函数的图象求出函数的最小值.
【解】(1)函数的图象如图所示.
由图象可知f(x)的单调递增区间为(-∞,0)和[0,+∞),无递减区间.
(2)由函数图象可知,函数的最小值为f(0)=-1.
图象法求最值的一般步骤
1.函数f(x)在区间[-2,5]上的图象如图所示,则此函数的最小值、最大值分别是( )
A.-2,f(2) B.2,f(2)
C.-2,f(5) D.2,f(5)
2.已知函数f(x)=x2-x(0≤x≤2),2x-1(x>2),求函数f(x)的最大值和最小值.
解:作出f(x)的图象如图.由图象可知,当x=2时,f(x)取最大值为2;
当x=12时,f(x)取最小值为-14.
所以f(x)的最大值为2,最小值为-14.
利用函数的单调性求最值
已知函数f(x)=x-1x+2,x∈[3,5].
(1)判断函数f(x)的单调性,并证明;
(2)求函数f(x)的最大值和最小值.
函数的最值与单调性的关系
(1)若函数f(x)在闭区间[a,b]上是减函数,则f(x)在[a,b]上的最大值为f(a),最小值为f(b).
(2)若函数f(x)在闭区间[a,b]上是增函数,则f(x)在[a,b]上的最大值为f(b),最小值为f(a).
[注意] 求最值时一定要注意所给区间的开闭,若是开区间,则不一定有最值.
... ... ...
函数的基本性质PPT,第四部分内容:达标反馈
1.函数f(x)的图象如图,则其最大值、最小值分别为( )
A.f32,f-32B.f(0),f32
C.f-32,f(0)D.f(0),f(3)
2.设定义在R上的函数f(x)=x|x|,则f(x)( )
A.只有最大值
B.只有最小值
C.既有最大值,又有最小值
D.既无最大值,又无最小值
3.若函数f(x)=1x在[1,b](b>1)上的最小值是14,则b=________.
... ... ...
《函数的奇偶性》函数的概念与性质PPT(第2课时奇偶性的应用) 第一部分内容:学 习 目 标 1.会根据函数奇偶性求函数值或解析式. 2.能利用函数的奇偶性与单调性分析、解决较简单的问..
《函数的奇偶性》函数的概念与性质PPT(第2课时奇偶性的应用) 第一部分内容:学 习 目 标 1.会根据函数奇偶性求函数值或解析式. 2.能利用函数的奇偶性与单调性分析、解决较简单的问..
《函数的奇偶性》函数的概念与性质PPT(第1课时奇偶性的概念) 第一部分内容:学 习 目 标 1.理解奇函数、偶函数的定义. 2.了解奇函数、偶函数图像的特征. 3.掌握判断函数奇偶性的..
发布于:2020-05-03 14:11:49
0
必修一A版
《函数的基本性质》函数的概念与性质PPT(第1课时函数的单调性)
第一部分内容:学习目标
了解函数单调性的概念,会用定义判断或证明函数的单调性
会借助图象和定义求函数的单调区间
会根据函数的单调性求参数或解参数不等式
... ... ...
函数的基本性质PPT,第二部分内容:自主学习
预习教材P76-P79,并思考以下问题:
1.增函数、减函数的概念是什么?
2.函数的单调性和单调区间有什么关系?
1.增函数、减函数的概念
一般地,设函数f(x)的定义域为I,区间D⊆I:
(1)如果∀x1,x2∈D,当x1<x2时,都有_____________,那么就称函数f(x)在区间D上单调递增(如图①).
特别地,当函数f(x)在它的定义域上_________时,我们就称它是增函数.
(2)如果∀x1,x2∈D,当x1<x2时,都有______________,那么就称函数f(x)在区间D上单调递减(如图②)
特别地,当函数f(x)在它的定义域上_________时,我们就称它是减函数.
■名师点拨
(1)增减函数定义中x1,x2的三个特征
①任意性:定义中符号“∀”不能去掉,应用时不能以特殊代替一般;
②有大小:一般令x1 ③同区间:x1和x2属于同一个单调区间. (2)增减函数与自变量、函数值的互推关系 ①x1 ②x1 2.函数的单调性与单调区间 如果函数y=f(x)在区间D上_________或_________,那么就说函数y=f(x)在这一区间具有(严格的)单调性,区间D叫做y=f(x)的_________. ■名师点拨 单调性的两个特性 (1)“整体”性:单调函数在同一个单调区间上具有的性质是相同的. (2)“局部”性:指的是一个函数在定义域的不同区间内可以有不同的单调性. 判断正误(正确的打“√”,错误的打“×”) (1)所有的函数在其定义域上都具有单调性.( ) (2)若函数y=f(x)在区间[1,3]上是减函数,则函数y=f(x)的单调递减区间是[1,3].( ) (3)若函数f(x)为R上的减函数,则f(-3)>f(3).( ) (4)若函数y=f(x)在定义域上有f(1) (5)若函数f(x)在(-∞,0)和(0,+∞)上单调递减,则f(x)在(-∞,0)∪(0,+∞)上单调递减.( ) 函数y=f(x)在区间[-2,2]上的图象如图所示,则此函数的增区间是( ) A.[-2,0] B.[0,1] C.[-2,1] D.[-1,1] ... ... ... 函数的基本性质PPT,第三部分内容:讲练互动 函数单调性的判定与证明 证明函数f(x)=x+4x在(2,+∞)上是增函数. 【证明】∀x1,x2∈(2,+∞),且x1<x2, 则f(x1)-f(x2)=x1+4x1-x2-4x2 =(x1-x2)+4(x2-x1)x1x2 (变问法)若本例的函数不变,试判断f(x)在(0,2)上的单调性. 利用定义证明函数单调性的步骤 [注意]作差变形是证明函数单调性的关键,且变形的结果多为几个因式乘积的形式. ... ... ... 函数的基本性质PPT,第四部分内容:达标反馈 1.函数y=x2-6x的减区间是( ) A.(-∞,2] B.[2,+∞) C.[3,+∞) D.(-∞,3] 2.设(a,b),(c,d)都是f(x)的单调增区间,且x1∈(a,b),x2∈(c,d),x1 A.f(x1) C.f(x1)=f(x2) D.不能确定 3.若f(x)在R上是单调递减的,且f(x-2) 4.如图分别为函数y=f(x)和y=g(x)的图象,试写出函数y=f(x)和y=g(x)的单调增区间. ... ... ... 《函数的奇偶性》函数的概念与性质PPT(第2课时奇偶性的应用) 第一部分内容:学 习 目 标 1.会根据函数奇偶性求函数值或解析式. 2.能利用函数的奇偶性与单调性分析、解决较简单的问.. 《函数的奇偶性》函数的概念与性质PPT(第2课时奇偶性的应用) 第一部分内容:学 习 目 标 1.会根据函数奇偶性求函数值或解析式. 2.能利用函数的奇偶性与单调性分析、解决较简单的问.. 《函数的奇偶性》函数的概念与性质PPT(第1课时奇偶性的概念) 第一部分内容:学 习 目 标 1.理解奇函数、偶函数的定义. 2.了解奇函数、偶函数图像的特征. 3.掌握判断函数奇偶性的..
发布于:2020-05-03 14:11:49
0
必修一A版
《函数的概念及其表示》函数的概念与性质PPT(第三课时分段函数)
第一部分内容:学习目标
理解分段函数的概念,会求分段函数的函数值
能画出分段函数的图象,并会应用解决问题
... ... ...
函数的概念及其表示PPT,第二部分内容:自主学习
预习教材P68-P71,并思考以下问题:
1.什么是分段函数?
2.分段函数是一个函数还是多个函数?
1.分段函数
如果函数y=f(x),x∈A,根据自变量x在A中不同的取值范围,有着不同的对应关系,则称这样的函数为分段函数.
■名师点拨
(1)分段函数是一个函数,而不是几个函数.处理分段函数问题时,要先确定自变量的取值在哪个区间,从而选取相应的对应关系.
(2)分段函数在书写时要用大括号把各段函数合并写成一个函数的形式,并且必须指明各段函数自变量的取值范围.
(3)分段函数的定义域是所有自变量取值区间的并集,分段函数的定义域只能写成一个集合的形式,不能分开写成几个集合的形式.
(4)分段函数的值域是各段函数在对应自变量的取值范围内值域的并集.
2.分段函数的图象
分段函数有几段,它的图象就由几条曲线组成.在同一直角坐标系中,根据每段的定义区间和表达式依次画出图象,要注意每段图象的端点是空心点还是实心点,组合到一起就得到整个分段函数的图象.
■名师点拨
在画每一段函数图象时,可以先不管定义域的限制,用虚线作出其图象,再用实线保留其在该段定义区间内的相应图象即可,即“分段作图”.
判断正误(正确的打“√”,错误的打“×”)
(1)分段函数由几个函数构成.( )
(2)函数f(x)=1,x≥0,-1,x<0是分段函数.( )
(3)分段函数的定义域是各段上自变量取值的并集.( )
下列给出的式子是分段函数的是( )
①f(x)=x2+1,1≤x≤5,2x,x<1.②f(x)=x+1,x∈R,x2,x≥2.
③f(x)=2x+3,1≤x≤5,x2,x≤1.④f(x)=x2+3,x<0,x-1,x≥5.
A.①② B.①④
C.②④ D.③④
... ... ...
函数的概念及其表示PPT,第三部分内容:讲练互动
分段函数的定义域、值域
(1)已知函数f(x)=|x|x,则其定义域为( )
A.R B.(0,+∞)
C.(-∞,0) D.(-∞,0)∪(0,+∞)
(2)函数f(x)=-x2+1,0 (1)分段函数定义域、值域的求法 ①分段函数的定义域是各段函数定义域的并集; ②分段函数的值域是各段函数值域的并集. (2)绝对值函数的定义域、值域通常要转化为分段函数来解决. 分段函数求值问题 已知函数f(x)=x+1,x≤-2,x2+2x,-2 f(-3),ff-52的值. (变问法)本例条件不变,若f(a)=3,求实数a的值. (1)分段函数求函数值的方法 ①确定要求值的自变量属于哪一段区间; ②代入该段的解析式求值,直到求出值为止.当出现f(f(x0))的形式时,应从内到外依次求值. (2)已知函数值求字母取值的步骤 ①先对字母的取值范围分类讨论; ②然后代入到不同的解析式中; ③通过解方程求出字母的值; ④检验所求的值是否在所讨论的区间内. ... ... ... 函数的概念及其表示PPT,第四部分内容:达标反馈 1.函数f(x)=y=2x2,0≤x≤1,2,1 A.R B.[0,+∞) C.[0,3] D.{y|0≤y≤2或y=3} 2.已知函数y=x2+1,x≤0,-2x,x>0,则使函数值为5的x的值是 ( ) A.-2 B.2或-52 C.2或-2 D.2或-2或-52 3.函数y=x+|x|x的图象是( ) ... ... ... 《函数的奇偶性》函数的概念与性质PPT(第2课时奇偶性的应用) 第一部分内容:学 习 目 标 1.会根据函数奇偶性求函数值或解析式. 2.能利用函数的奇偶性与单调性分析、解决较简单的问.. 《函数的奇偶性》函数的概念与性质PPT(第2课时奇偶性的应用) 第一部分内容:学 习 目 标 1.会根据函数奇偶性求函数值或解析式. 2.能利用函数的奇偶性与单调性分析、解决较简单的问.. 《函数的奇偶性》函数的概念与性质PPT(第1课时奇偶性的概念) 第一部分内容:学 习 目 标 1.理解奇函数、偶函数的定义. 2.了解奇函数、偶函数图像的特征. 3.掌握判断函数奇偶性的..
发布于:2020-05-03 14:11:49
0
必修一A版
《函数的概念及其表示》函数的概念与性质PPT(第二课时函数的表示法)
第一部分内容:学习目标
了解函数的三种表示法及各自的优缺点,会根据不同需要选择恰当方法表示函数
掌握求函数解析式的常用方法
会作函数的图象并从图象上获取有用信息
... ... ...
函数的概念及其表示PPT,第二部分内容:自主学习
预习教材P67,并思考以下问题:
1.函数的表示方法有哪几种?
2.函数的表示方法有什么特点?
函数的表示法
■名师点拨
(1)列表法:采用列表法的前提是函数值对应清楚,选取的自变量要有代表性.
(2)图象法:图象既可以是连续的曲线,也可以是离散的点.
(3)解析法:利用解析法表示函数的前提是变量间的对应关系明确,且利用解析法表示函数时要注意注明其定义域.
判断正误(正确的打“√”,错误的打“×”)
(1)任何一个函数都可以用解析法表示.( )
(2)函数的图象一定是定义区间上一条连续不断的曲线.( )
已知y与x成反比,且当x=2时,y=1,则y关于x的函数关系式为( )
A.y=1x B.y=-x
C.y=2x D.y=x2
已知函数f(x)由下表给出,则f(f(3))=________.
x1234
f(x)3241
函数f(x)的图象如图所示,则f(x)的定义域是________,值域是________.
... ... ...
函数的概念及其表示PPT,第三部分内容:讲练互动
函数的三种表示方法
某商场新进了10台彩电,每台售价3 000元,试求售出台数x(x为正整数)与收款数y之间的函数关系,分别用列表法、图象法、解析法表示出来.
(1)函数三种表示方法的选择
解析法、图象法和列表法分别从三个不同的角度刻画了自变量与函数值的对应关系.采用解析法的前提是变量间的对应关系明确,采用图象法的前提是函数的变化规律清晰,采用列表法的前提是定义域内自变量的个数较少.
(2)应用函数三种表示方法应注意以下三点
①解析法必须注明函数的定义域;
②列表法必须能清楚表明自变量与函数值的对应关系;
③图象法必须清楚函数图象是“点”还是“线”.
1.某学生离家去学校,一开始跑步前进,跑累了再走余下的路程.下列图中纵轴表示离校的距离,横轴表示出发后的时间,则较符合该学生走法的是( )
解析:选D.由题意可知,一开始速度较快,后来速度变慢,所以开始曲线比较陡峭,后来曲线比较平缓,又纵轴表示离校的距离,所以开始时距离最大,最后距离为0.
2.下表表示函数y=f(x),则f(x)>x的整数解的集合是________.
x0 y=f(x)46810 解析:当0 当5≤x<10时,f(x)>x的整数解为{5}. 当10≤x<15时,f(x)>x的整数解为∅. 当15≤x<20时,f(x)>x的整数解为∅. 综上所述,f(x)>x的整数解的集合是{1,2,3,5}. 求函数的解析式 (1)已知f(x)是一次函数,且f(f(x))=9x+4,求f(x)的解析式; (2)已知f(x+1)=x+2x,求f(x); (3)已知2f1x+f(x)=x(x≠0),求f(x). 【解】(1)设f(x)=kx+b(k≠0), 则f(f(x))=k(kx+b)+b=k2x+kb+b=9x+4. 所以k2=9,kb+b=4. 解得k=3,b=1,或k=-3,b=-2. 所以f(x)=3x+1或f(x)=-3x-2. 求函数解析式的常用方法 (1)待定系数法:若已知函数的类型,可用待定系数法求解,即由函数类型设出函数解析式,再根据条件列方程(组),通过解方程(组)求出待定系数,进而求出函数解析式. (2)换元法(有时可用“配凑法”):已知函数f(g(x))的解析式求f(x)的解析式可用换元法(或“配凑法”),即令g(x)=t,反解出x,然后代入f(g(x))中求出f(t),从而求出f(x). (3)消元法(或解方程组法):在已知式子中,含有关于两个不同变量的函数,而这两个变量有着某种关系,这时就要依据两个变量的关系,建立一个新的关于这两个变量的式子,由两个式子建立方程组,通过解方程组消去一个变量,得到目标变量的解析式,这种方法叫做消元法(或解方程组法). ... ... ... 函数的概念及其表示PPT,第四部分内容:达标反馈 1.已知函数f(x)的图象如图所示,其中点A,B的坐标分别为(0,3),(3,0),则f(f(0))=( ) A.2 B.4 C.0 D.3 2.已知函数f(2x+1)=6x+5,则f(x)的解析式是( ) A.f(x)=3x+2 B.f(x)=3x+1 C.f(x)=3x-1 D.f(x)=3x+4 3.已知函数f(x)=x-mx,且此函数的图象过点(5,4),则实数m的值为________. 4.已知f(x)是二次函数,且满足f(0)=1,f(x+1)-f(x)=2x,求f(x). ... ... ... 《函数的奇偶性》函数的概念与性质PPT(第2课时奇偶性的应用) 第一部分内容:学 习 目 标 1.会根据函数奇偶性求函数值或解析式. 2.能利用函数的奇偶性与单调性分析、解决较简单的问.. 《函数的奇偶性》函数的概念与性质PPT(第2课时奇偶性的应用) 第一部分内容:学 习 目 标 1.会根据函数奇偶性求函数值或解析式. 2.能利用函数的奇偶性与单调性分析、解决较简单的问.. 《函数的奇偶性》函数的概念与性质PPT(第1课时奇偶性的概念) 第一部分内容:学 习 目 标 1.理解奇函数、偶函数的定义. 2.了解奇函数、偶函数图像的特征. 3.掌握判断函数奇偶性的..
发布于:2020-05-03 14:11:48
0
必修一A版
《章末整合》函数的概念与性质PPT
第一部分内容:专题一 求函数的值域
例1求下列函数的值域:
(1)y=(5x'-' 1)/(4x+2);(2)y=(x^2 '-' 4x+3)/(2x^2 '-' x'-' 1);
(3)y=(2x^2+4x'-' 7)/(x^2+2x+3);(4)y=2x-√(x'-' 1).
解:(1)(借助反比例函数的特征求解)
y=(5x'-' 1)/(4x+2)=(5/4 '(' 4x+2')-' 1'-' 5/2)/(4x+2)=(5/4 '(' 4x+2')-' 7/2)/(4x+2)=5/4-7/(2'(' 4x+2')' ).
∵7/(2'(' 4x+2')' )≠0,∴y≠5/4.
所以函数的值域为{y'∈' R├|y≠5/4┤}.
(2)∵y=(x^2 '-' 4x+3)/(2x^2 '-' x'-' 1)=('(' x'-' 1')(' x'-' 3')' )/('(' x'-' 1')(' 2x+1')' )=(x'-' 3)/(2x+1)(x≠1),
又(x'-' 3)/(2x+1)=(1/2 '(' 2x+1')-' 7/2)/(2x+1)=1/2-7/(2'(' 2x+1')' ).
当x=1时,原式y=(1'-' 3)/(2×1+1)=-2/3.
∴函数的值域为{y'∈' R├|y≠1/2 '且' y≠'-' 3/2┤}.
(3)(转化为关于x的二次方程,然后利用判别式求值域)
已知函数式可变形为:yx2+2yx+3y=2x2+4x-7.
(y-2)x2+2(y-2)x+3y+7=0,
当y≠2时,将上式视为关于x的一元二次方程.
∵x∈R,∴Δ≥0,即[2(y-2)]2-4(y-2)(3y+7)≥0.
解得-9/2≤y<2.
当y=2时,3×2+7≠0,∴y≠2.
∴函数的值域为 -9/2,2 .
(4)令√(x'-' 1)=t,则t≥0,x=t2+1.
∴y=2(t2+1)-t=2t2-t+2=2 t-1/4 2+15/8.
∵t≥0,∴y≥15/8.∴函数y=2x-√(x'-' 1)的值域是 15/8,+∞ .
... ... ...
章末整合PPT,第二部分内容:专题二 利用函数单调性求函数的最值
例2设a为实数,函数f(x)=x2+|x-a|+1,x∈R.
(1)讨论函数f(x)的奇偶性;
(2)求f(x)的最小值.
解:(1)当a=0时,函数f(-x)=(-x)2+|-x|+1=f(x),此时f(x)为偶函数.
当a≠0时,f(a)=a2+1,f(-a)=a2+2|a|+1,f(-a)≠f(a),f(-a)≠-f(a).
此时函数f(x)既不是奇函数,也不是偶函数.
(2)①当x≤a时,函数f(x)=x2-x+a+1= x-1/2 2+a+3/4.
若a≤1/2,则函数f(x)在(-∞,a]上单调递减,从而,函数f(x)在(-∞,a]上的最小值为f(a)=a2+1.
若a>1/2,则函数f(x)在(-∞,a]上的最小值为f 1/2 =3/4+a,且f 1/2
②当x≥a时,函数f(x)=x2+x-a+1= x+1/2 2-a+3/4.
若a≤-1/2,则函数f(x)在[a,+∞)上的最小值为f -1/2 =3/4-a,且f -1/2 ≤f(a).
若a>-1/2,则函数f(x)在[a,+∞)上单调递增,从而函数f(x)在[a,+∞)上的最小值为f(a)=a2+1.
综上,当a≤-1/2时,函数f(x)的最小值是3/4-a;
当a>1/2时,函数f(x)的最小值是a+3/4.
方法技巧 解含参数问题的基本思想是分类讨论,关键是确定讨论的标准,要求不重复,不遗漏.本题对于奇偶性的讨论标准是参数为零以及非零,分别对应偶函数及非奇非偶函数;对于最大值与最小值的讨论标准比较复杂,可以看为两类标准,一类是绝对值的零点(零点知识将在第四章学习),二是抛物线的对称轴与相应区间的位置,通常需借助函数的图象.
... ... ...
章末整合PPT,第三部分内容:专题三 函数的奇偶性的应用
例3若奇函数y=f(x)是定义在[-1,1]上的减函数,且f(1-a)+f(1-a2)>0,求a的取值范围.
解:由奇函数的性质,-f(1-a2)=f(a2-1),即f(1-a)+f(1-a2)>0等价于f(1-a)>f(a2-1),
又因为f(x)是定义在[-1,1]上的减函数,
所以{■('-' 1≤1'-' a≤1',' @'-' 1≤a^2 '-' 1≤1',' @1'-' a
方法技巧 利用f(x)是奇函数和减函数的性质,去掉f,等价变换出a的不等式组.
变式训练3若f(x)是定义在实数集R上的偶函数,且在区间(-∞,0)上是增函数,又f(2a2+a+1)
解:法一:∀x1,x2∈(0,+∞),且x1
因为f(x)在区间(-∞,0)上是增函数,
所以f(-x1)>f(-x2).
又因为f(x)是偶函数,得f(x1)>f(x2),
所以f(x)在(0,+∞)上是减函数,
因为2a2+a+1=2 a2+1/2a +1=2 a+1/4 2+7/8,3a2-2a+1=3 a-1/3 2+2/3,
所以2a2+a+1和3a2-2a+1是两个正数,
法二:同法一,判断出2a2+a+1和3a2-2a+1是两个正数,则有-(2a2+a+1)<0和-(3a2-2a+1)<0.
由偶函数性质,f(2a2+a+1)
又f(x)在区间(-∞,0)上是增函数,即-(2a2+a+1)<-(3a2-2a+1),解得0
《章末整合》平面向量初步PPT 题型突破深化提升 例1如图,梯形ABCD中,AB∥CD,点M,N分别是DA,BC的中点,且DC/AB=k,设(AD)=e1,(AB)=e2,以e1,e2为基底表示向量(DC),(BC),(MN). 方法技巧平..
《章末整合》统计与概率PPT 提醒突破深化提升 例1(1)某中学高一年级有560人,高二年级有540人,高三年级有520人,用分层抽样的方法抽取部分样本,若从高一年级抽取28人,则从高二、高三年..
《章末整合提升》元素与物质世界PPT 第一部分内容:一、分类方法及其在生活中的应用 1.元素与物质分类 (1)元素以游离态和化合态存在于自然界中,非常活泼的元素只能以化合态存在。如..
发布于:2020-07-02 09:42:40
0
必修一A版
《习题课 单调性与奇偶性的综合应用》函数的概念与性质PPT
第一部分内容:课标阐释
1.理解函数奇偶性与单调性的关系.
2.能运用函数的单调性与奇偶性等解决比较大小、求最值、解不等式等综合问题.
... ... ...
习题课单调性与奇偶性的综合应用PPT,第二部分内容:自主预习
奇、偶函数在对称区间上的单调性
1.(1)已知函数y=f(x)在R上是奇函数,且在(0,+∞)是增函数.那么y=f(x)在它的对称区间(-∞,0)上单调性如何?
提示:奇函数的图象关于坐标原点对称,所以在两个对称的区间上单调性相同.即y=f(x)在它的对称区间(-∞,0)上单调递增.
(2)你能用函数单调性的定义证明上面的结论吗?
提示:∀x1,x2∈(-∞,0),且x1
∵y=f(x)在(0,+∞)上是增函数,
∴f(-x1)>f(-x2).
∵y=f(x)在R上是奇函数,
∴f(-x1)=-f(x1),f(-x2)=-f(x2),
∴-f(x1)>-f(x2),∴f(x1) ∴函数y=f(x)在(0,+∞)上是增函数. (3)已知函数y=f(x)在R上是偶函数,且在(0,+∞)是减函数,y=f(x)在它的对称区间(-∞,0)上是增函数还是减函数? 提示:偶函数的图象关于y轴对称,所以在两个对称的区间上单调性相反.即y=f(x)在它的对称区间(-∞,0)上单调递增. (4)你能用函数单调性的定义证明上面的结论吗? 提示:∀x1,x2∈(-∞,0),且x1 ∵y=f(x)在(0,+∞)上是减函数, ∴f(-x1) ∵y=f(x)在R上是偶函数, ∴f(-x1)=f(x1),f(-x2)=f(x2), ∴f(x1) ∴函数y=f(x)在(0,+∞)上是增函数. (1)若函数f(x)是奇函数,且f(x)在区间[a,b]上是单调函数,则f(x)在其对称区间[-b,-a]上也是单调的,且单调性相同. (2)若函数f(x)是偶函数,且f(x)在区间[a,b]上是单调函数,则f(x)在其对称区间['−' ?',−' ?]上也是单调的,且单调性相反. 3.做一做 (1)若奇函数f(x)在[-6,-2]上是减函数,且最小值是1,则它在[2,6]上是( ) A.增函数且最小值是-1B.增函数且最大值是-1 C.减函数且最大值是-1D.减函数且最小值是-1 解析:∵奇函数f(x)在[-6,-2]上是减函数,且最小值是1,∴函数f(x)在[2,6]上是减函数且最大值是-1. (2)若偶函数f(x)在(-∞,0]上是增函数,则f(-5),f( ),f(-2),f(4)的大小关系为___________________________. 解析:因为f(x)是偶函数,且在(-∞,0]上是增函数,所以f(x)在[0,+∞)上是减函数,且f(-5)=f(5),f(-2)=f(2).因为√3<2<4<5,所以f(5) ... ... ... 习题课单调性与奇偶性的综合应用PPT,第三部分内容:探究学习 应用函数的单调性与奇偶性判定函数值的大小 例1 已知偶函数f(x)的定义域为R,当x∈[0,+∞)时,f(x)是增函数,则f(-2),f(π),f(-3)的大小关系是( ) A.f(π)>f(-3)>f(-2) B.f(π)>f(-2)>f(-3) C.f(π) D.f(π) 解析:∵f(x)在R上是偶函数,∴f(-2)=f(2),f(-3)=f(3).∵2<3<π,且f(x)在区间[0,+∞)上为增函数,∴f(2) ∴f(-2) 反思感悟应用函数的单调性与奇偶性判断函数值的大小时,先利用函数的奇偶性将自变量转化到同一个单调区间上,再根据函数的单调性对函数值的大小作出比较. 延伸探究(1)若将本例中的“增函数”改为“减函数”,其他条件不变,则f(-2),f(π),f(-3)的大小关系如何? (2)若将本例中的“偶函数”改为“奇函数”,其他条件不变,比较这三个数的大小. 解:(1)因为当x∈[0,+∞)时,f(x)是减函数,所以有f(2)>f(3)>f(π).又因为f(x)是R上的偶函数,所以f(-2)=f(2),f(-3)=f(3),从而有f(-2)>f(-3)>f(π). (2)因为函数为定义在R上的奇函数,且在[0,+∞)上为增函数,所以函数在R上是增函数, 因为-3<-2<π,所以f(-3) ... ... ... 习题课单调性与奇偶性的综合应用PPT,第四部分内容:思维辨析 判断抽象函数的奇偶性 典例已知函数f(x),x∈R,若对于任意实数a,b都有f(a+b)=f(a)+f(b),求证:函数f(x)为奇函数. 证明:由题意可知,函数的定义域为R,关于原点对称. 令a=0,则f(b)=f(0)+f(b),∴f(0)=0. 又令a=-x,b=x,代入,得f(-x+x)=f(-x)+f(x),即0=f(-x)+f(x),∴f(-x)=-f(x), ∴函数f(x)为奇函数. 反思感悟 判断抽象函数的奇偶性主要是利用赋值法,并结合已知条件寻找f(-x)与f(x)的关系,从而得出结论. 变式训练已知函数f(x),x∈R,若对于任意实数x1,x2,都有f(x1+x2)+f(x1-x2)=2f(x1)·f(x2), 求证:函数f(x)为偶函数. 证明:令x1=0,x2=x,得f(x)+f(-x)=2f(0)f(x).① 令x2=0,x1=x,得f(x)+f(x)=2f(0)f(x).② 由①②得f(x)+f(-x)=f(x)+f(x),即f(-x)=f(x), 所以函数f(x)为偶函数. ... ... ... 习题课单调性与奇偶性的综合应用PPT,第五部分内容:随堂演练 1.若f(x)是定义在[-6,6]上的偶函数,且f(4)>f(1),则下列各式一定成立的是( ) A.f(0) 解析:∵f(x)是定义在[-6,6]上的偶函数, ∴f(-1)=f(1).又f(4)>f(1),f(4)>f(-1). 2.若f(x)满足f(-x)=f(x),且f(x)在(-∞,-1]上是增函数,则( ) A.f('-' 3/2) B.f(-1) C.f(2) D.f(2) 解析:∵f(-x)=f(x),∴f(2)=f(-2), ∵-2<-3/2<-1,又f(x)在(-∞,-1]上是增函数,∴f(-2) 答案:D ... ... ... 《函数的奇偶性》函数的概念与性质PPT(第2课时奇偶性的应用) 第一部分内容:学 习 目 标 1.会根据函数奇偶性求函数值或解析式. 2.能利用函数的奇偶性与单调性分析、解决较简单的问.. 《函数的奇偶性》函数的概念与性质PPT(第2课时奇偶性的应用) 第一部分内容:学 习 目 标 1.会根据函数奇偶性求函数值或解析式. 2.能利用函数的奇偶性与单调性分析、解决较简单的问.. 《函数的奇偶性》函数的概念与性质PPT(第1课时奇偶性的概念) 第一部分内容:学 习 目 标 1.理解奇函数、偶函数的定义. 2.了解奇函数、偶函数图像的特征. 3.掌握判断函数奇偶性的..
发布于:2020-05-03 14:09:59
0
必修一A版