《幂函数》函数的概念与性质PPT课件
第一部分内容:学习目标
了解幂函数的概念,会求幂函数的解析式
掌握五种幂函数y=x,y=x2,y=x3,y=x12,y=x-1的图象特点
借助五种幂函数的图象,掌握五种幂函数的性质,并会应用
... ... ...
幂函数PPT,第二部分内容:自主学习
预习教材P89-P91,并思考以下问题:
1.幂函数的定义是什么?
2.幂函数的解析式有什么特点?
3.幂函数的图象有什么特点?
4.幂函数的性质有哪些?
1.幂函数的概念
一般地,函数y=_____叫做幂函数,其中_____是自变量,_____是常数.
■名师点拨
幂函数的特征
(1)xα的系数为1.
(2)xα的底数是自变量.
(3)xα的指数为常数.
只有同时满足这三个条件,才是幂函数.对于形如y=(2x)α,y=2x5,y=xα+6等函数都不是幂函数.
2.幂函数的图象与性质
(1)五种常见幂函数的图象
(2)五类幂函数的性质
判断正误(正确的打“√”,错误的打“×”)
(1)幂函数的图象都过点(0,0),(1,1).( )
(2)幂函数的图象一定不能出现在第四象限.( )
(3)当幂指数α取1,3,12时,幂函数y=xα是增函数.( )
(4)当幂指数α=-1时,幂函数y=xα在定义域上是减函数. ( )
下列函数为幂函数的是( )
A.y=2x3 B.y=2x2-1
C.y=1xD.y=3x2
在下列四个图形中,y=x-12的图象大致是( )
若y=mxα+(2n-4)是幂函数,则m+n=________.
... ... ...
幂函数PPT,第三部分内容:讲练互动
幂函数的概念
(1)下列函数:①y=x3;②y=12x;③y=4x2;④y=x5+1;⑤y=(x-1)2;⑥y=x;⑦y=ax(a>1).其中幂函数的个数为( )
A.1 B.2
C.3D.4
(2)若函数y=(m2+2m-2)xm为幂函数且在第一象限为增函数,则m的值为( )
A.1B.-3
C.-1D.3
【解析】(1)②⑦中自变量x在指数的位置,③中系数不是1,④中解析式为多项式,⑤中底数不是自变量本身,所以只有①⑥是幂函数.
(2)因为函数y=(m2+2m-2)xm为幂函数且在第一象限为增函数,所以m2+2m-2=1,m>0,所以m=1.
判断一个函数是否为幂函数的方法
判断一个函数是否为幂函数的依据是该函数是否为y=xα(α为常数)的形式,即函数的解析式为一个幂的形式,且需满足:
(1)指数为常数;
(2)底数为自变量;
(3)系数为1.
幂函数的图象及应用
已知幂函数f(x)=xα的图象过点P2,14,试画出f(x)的图象并指出该函数的定义域与单调区间.
【解】因为f(x)=xα的图象过点P2,14,
所以f(2)=14,即2α=14,
得α=-2,即f(x)=x-2,f(x)的图象如图所示,定义域为(-∞,0)∪(0,+∞),单调减区间为(0,+∞),单调增区间为(-∞,0).
解决幂函数图象问题应把握的原则
(1)依据图象高低判断幂指数大小,相关结论为:①在(0,1)上,指数越大,幂函数图象越靠近x轴(简记为指大图低);②在(1,+∞)上,指数越大,幂函数图象越远离x轴(简记为指大图高).
(2)依据图象确定幂指数α与0,1的大小关系,即根据幂函数在第一象限内的图象(类似于y=x-1或y=x12或y=x3)来判断.
... ... ...
幂函数PPT,第四部分内容:达标反馈
1.已知函数f(x)=(a2-a-1)x1a-2为幂函数,则实数a的值为( )
A.-1或2B.-2或1
C.-1D.1
2.幂函数y=f(x)的图象经过点(3,3),则f(x)( )
A.是偶函数,且在(0,+∞)上是增函数
B.是偶函数,且在(0,+∞)上是减函数
C.是奇函数,且在(0,+∞)上是减函数
D.既不是奇函数,也不是偶函数,且在(0,+∞)上是增函数
3.函数y=x-3在区间[-4,-2]上的最小值是________.
4.已知y=(m2+2m-2)xm2-1+2n-3是定义域为R的幂函数,求m,n的值.
《章末复习提升课》指数函数、对数函数与幂函数PPT课件 综合提高 指数、对数的运算 例1 化简:(1)(8) -23(3102)92105; (2)2log32-log3329+log38-25log53. 规律方法 指数、对数的..
《函数的应用》指数函数、对数函数与幂函数PPT课件 第一部分内容:考点 指数、对数函数模型在实际问题中的应用 根据实际问题建立函数模型 学习目标 会利用已知函数模型解决实际问题 ..
《增长速度的比较》指数函数、对数函数与幂函数PPT课件 第一部分内容:学习目标 了解平均变化率描述增长速度的概念 了解在实际生活中不同增长规律的函数模型 ... ... ... 增长速度的..
发布于:2020-07-17 10:15:28
0
人教版高中数学必修一A版
《章末复习课》三角函数PPT
同角三角函数基本关系和诱导公式的应用
【例1】(1)已知sin(-π+θ)+2cos(3π-θ)=0,则sin θ+cos θsin θ-cos θ=________.
(2)已知f(α)=sin2π-α•cos2π-α•tan-π+αsin-π+α•tan-α+3π.
①化简f(α);
②若f(α)=18,且π4<α<π2,求cos α-sin α的值;
③若α=-47π4,求f(α)的值.
[思路点拨]先用诱导公式化简,再用同角三角函数基本关系求值.
1.将本例(2)中“18”改为“-18”“π4<α<π2”改为“-π4<α<0”求cos α+sin α.
[解] 因为-π4<α<0,所以cos α>0,sin α<0且|cos α|>|sin α|,
所以cos α+sin α>0,
又(cos α+sin α)2=1+2sin αcos α=1+2×-18=34,所以cos α+sin α=32.
2.将本例(2)中的用tan α表示1fα+cos2α.
[解] 1fα+cos2α=1sin αcos α+cos2α
=sin2α+cos2αsin αcos α+cos2α=tan2α+1tan α+1.
1.牢记两个基本关系式sin2α+cos2α=1及sin αcos α=tan α,并能应用两个关系式进行三角函数的求值、化简、证明.在应用中,要注意掌握解题的技巧.比如:已知sin α±cos α的值,可求cos αsin α.注意应用(cos α±sin α)2=1±2sin αcos α.
2.诱导公式可概括为k•π2±α(k∈Z)的各三角函数值的化简公式.记忆规律是:奇变偶不变,符号看象限.
三角函数的图象变换问题
【例2】(1)已知曲线C1:y=cos x,C2:y=sin2x+2π3,则下面结论正确的是( )
A.把C1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移π6个单位长度,得到曲线C2
B.把C1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向左平移π12个单位长度,得到曲线C2
C.把C1上各点的横坐标缩短到原来的12倍,纵坐标不变,再把得到的曲线向右平移π6个单位长度,得到曲线C2
D.把C1上各点的横坐标缩短到原来的12倍,纵坐标不变,再把得到的曲线向左平移π12个单位长度,得到曲线C2
(2)将函数y=sin(2x+φ)的图象沿x轴向左平移π8个单位长度后,得到一个偶函数的图象,则φ的一个可能取值为( )
A.π2 B.π4
C.0 D.-π4
1.函数y=sin x的图象变换到y=Asin(ωx+φ),x∈R图象的两种方法
2.对称变换
(1)y=f(x)的图象DDDD→关于x轴对称y=-f(x)的图象.
(2)y=f(x)的图象DDDD→关于y轴对称y=f(-x)的图象.
(3)y=f(x)的图象DDDD→关于0,0对称y=-f(-x)的图象.
三角函数的性质
【例3】(1)若函数f(x)=3sin(2x+θ)(0<θ<π)是偶函数,则f(x)在[0,π]上的单调递增区间是( )
A.0,π2 B.π2,π
C.π4,π2 D.3π4,π
(2)已知函数f(x)=2sin2x+π6+a+1(其中a为常数).
①求f(x)的单调区间;
②若x∈0,π2时,f(x)的最大值为4,求a的值.
[思路点拨] (1)先根据函数f(x)是偶函数,求θ,再依据单调性求增区间,最后与[0,π]求交集.
(2)①由2kπ-π2≤2x+π6≤2kπ+π2,k∈Z求增区间,
由2kπ+π2≤2x+π6≤2kπ+3π2,k∈Z求减区间.
②先求f(x)的最大值,得关于a的方程,再求a的值.
... ... ...
《章末复习课》牛顿运动定律PPT 第一部分内容:巩固层知识整合 [核心速填] 1.力与运动的关系:力可以_____物体的运动状态. 2.牛顿第一定律:一切物体总保持静止或__________状态,..
《章末复习课》力与平衡PPT 第一部分内容:巩固层知识整合 [核心速填] 1.力的合成与分解 (1)遵守定则:_________定则或_________定则. (2)两个共点力的合力范围:_________F_______..
《章末复习课》相互作用PPT 第一部分内容:巩固层知识整合 [核心速填] 1.力的概念 (1)矢量性:既有____又有____. (2)作用效果:使物体发生____,改变物体的____. 2.重力 (1)定义..
发布于:2020-07-03 10:35:02
0
人教版高中数学必修一A版
《章末整合》函数的概念与性质PPT
第一部分内容:专题一 求函数的值域
例1求下列函数的值域:
(1)y=(5x'-' 1)/(4x+2);(2)y=(x^2 '-' 4x+3)/(2x^2 '-' x'-' 1);
(3)y=(2x^2+4x'-' 7)/(x^2+2x+3);(4)y=2x-√(x'-' 1).
解:(1)(借助反比例函数的特征求解)
y=(5x'-' 1)/(4x+2)=(5/4 '(' 4x+2')-' 1'-' 5/2)/(4x+2)=(5/4 '(' 4x+2')-' 7/2)/(4x+2)=5/4-7/(2'(' 4x+2')' ).
∵7/(2'(' 4x+2')' )≠0,∴y≠5/4.
所以函数的值域为{y'∈' R├|y≠5/4┤}.
(2)∵y=(x^2 '-' 4x+3)/(2x^2 '-' x'-' 1)=('(' x'-' 1')(' x'-' 3')' )/('(' x'-' 1')(' 2x+1')' )=(x'-' 3)/(2x+1)(x≠1),
又(x'-' 3)/(2x+1)=(1/2 '(' 2x+1')-' 7/2)/(2x+1)=1/2-7/(2'(' 2x+1')' ).
当x=1时,原式y=(1'-' 3)/(2×1+1)=-2/3.
∴函数的值域为{y'∈' R├|y≠1/2 '且' y≠'-' 3/2┤}.
(3)(转化为关于x的二次方程,然后利用判别式求值域)
已知函数式可变形为:yx2+2yx+3y=2x2+4x-7.
(y-2)x2+2(y-2)x+3y+7=0,
当y≠2时,将上式视为关于x的一元二次方程.
∵x∈R,∴Δ≥0,即[2(y-2)]2-4(y-2)(3y+7)≥0.
解得-9/2≤y<2.
当y=2时,3×2+7≠0,∴y≠2.
∴函数的值域为 -9/2,2 .
(4)令√(x'-' 1)=t,则t≥0,x=t2+1.
∴y=2(t2+1)-t=2t2-t+2=2 t-1/4 2+15/8.
∵t≥0,∴y≥15/8.∴函数y=2x-√(x'-' 1)的值域是 15/8,+∞ .
... ... ...
章末整合PPT,第二部分内容:专题二 利用函数单调性求函数的最值
例2设a为实数,函数f(x)=x2+|x-a|+1,x∈R.
(1)讨论函数f(x)的奇偶性;
(2)求f(x)的最小值.
解:(1)当a=0时,函数f(-x)=(-x)2+|-x|+1=f(x),此时f(x)为偶函数.
当a≠0时,f(a)=a2+1,f(-a)=a2+2|a|+1,f(-a)≠f(a),f(-a)≠-f(a).
此时函数f(x)既不是奇函数,也不是偶函数.
(2)①当x≤a时,函数f(x)=x2-x+a+1= x-1/2 2+a+3/4.
若a≤1/2,则函数f(x)在(-∞,a]上单调递减,从而,函数f(x)在(-∞,a]上的最小值为f(a)=a2+1.
若a>1/2,则函数f(x)在(-∞,a]上的最小值为f 1/2 =3/4+a,且f 1/2
②当x≥a时,函数f(x)=x2+x-a+1= x+1/2 2-a+3/4.
若a≤-1/2,则函数f(x)在[a,+∞)上的最小值为f -1/2 =3/4-a,且f -1/2 ≤f(a).
若a>-1/2,则函数f(x)在[a,+∞)上单调递增,从而函数f(x)在[a,+∞)上的最小值为f(a)=a2+1.
综上,当a≤-1/2时,函数f(x)的最小值是3/4-a;
当a>1/2时,函数f(x)的最小值是a+3/4.
方法技巧 解含参数问题的基本思想是分类讨论,关键是确定讨论的标准,要求不重复,不遗漏.本题对于奇偶性的讨论标准是参数为零以及非零,分别对应偶函数及非奇非偶函数;对于最大值与最小值的讨论标准比较复杂,可以看为两类标准,一类是绝对值的零点(零点知识将在第四章学习),二是抛物线的对称轴与相应区间的位置,通常需借助函数的图象.
... ... ...
章末整合PPT,第三部分内容:专题三 函数的奇偶性的应用
例3若奇函数y=f(x)是定义在[-1,1]上的减函数,且f(1-a)+f(1-a2)>0,求a的取值范围.
解:由奇函数的性质,-f(1-a2)=f(a2-1),即f(1-a)+f(1-a2)>0等价于f(1-a)>f(a2-1),
又因为f(x)是定义在[-1,1]上的减函数,
所以{■('-' 1≤1'-' a≤1',' @'-' 1≤a^2 '-' 1≤1',' @1'-' a
方法技巧 利用f(x)是奇函数和减函数的性质,去掉f,等价变换出a的不等式组.
变式训练3若f(x)是定义在实数集R上的偶函数,且在区间(-∞,0)上是增函数,又f(2a2+a+1)
解:法一:∀x1,x2∈(0,+∞),且x1
因为f(x)在区间(-∞,0)上是增函数,
所以f(-x1)>f(-x2).
又因为f(x)是偶函数,得f(x1)>f(x2),
所以f(x)在(0,+∞)上是减函数,
因为2a2+a+1=2 a2+1/2a +1=2 a+1/4 2+7/8,3a2-2a+1=3 a-1/3 2+2/3,
所以2a2+a+1和3a2-2a+1是两个正数,
法二:同法一,判断出2a2+a+1和3a2-2a+1是两个正数,则有-(2a2+a+1)<0和-(3a2-2a+1)<0.
由偶函数性质,f(2a2+a+1)
又f(x)在区间(-∞,0)上是增函数,即-(2a2+a+1)<-(3a2-2a+1),解得0
《章末整合》平面向量初步PPT 题型突破深化提升 例1如图,梯形ABCD中,AB∥CD,点M,N分别是DA,BC的中点,且DC/AB=k,设(AD)=e1,(AB)=e2,以e1,e2为基底表示向量(DC),(BC),(MN). 方法技巧平..
《章末整合》统计与概率PPT 提醒突破深化提升 例1(1)某中学高一年级有560人,高二年级有540人,高三年级有520人,用分层抽样的方法抽取部分样本,若从高一年级抽取28人,则从高二、高三年..
《章末整合提升》元素与物质世界PPT 第一部分内容:一、分类方法及其在生活中的应用 1.元素与物质分类 (1)元素以游离态和化合态存在于自然界中,非常活泼的元素只能以化合态存在。如..
发布于:2020-07-02 09:42:40
0
人教版高中数学必修一A版
《章末整合》三角函数PPT
第一部分内容:专题一 三角函数的图象及其变换
例1函数f(x)=Asin(ωx+φ) A,ω,φ为常数,A>0,ω>0,|φ|<π/2 的部分图象如图所示,则f(0)的值是_________.
解析:由题图可知,A=√2,T/4=7π/12-π/3=π/4,所以T=π,ω=2π/T=2.又函数图象经过点(π/3 ',' 0),
所以2×π/3+φ=π,则φ=π/3,故函数的解析式为f(x)=√2sin(2x+π/3),所以f(0)=√2sinπ/3=√6/2.
答案:√6/2
归纳总结由已知函数图象求函数y=Asin(ωx+φ)(A>0,ω>0)的解析式时,常用的解题方法是待定系数法.由图中的最大值或最小值确定A,由周期确定ω,由适合解析式的点的坐标来确定φ,但由图象求得的y=Asin(ωx+φ)(A>0,ω>0)的解析式一般不是唯一的,只有限定φ的取值范围,才能得出唯一的解,否则φ的值不确定,解析式也就不唯一.
变式训练1已知函数y=f(x)=Asin(ωx+φ) A>0,ω>0,0<φ<π/2 的图象上的一个最低点为M(2π/3 ',-' 2),周期为π.
(1)求f(x)的解析式;
(2)将y=f(x)的图象上的所有点的横坐标伸长到原来的2倍(纵坐标不变),然后再将所得的图象沿x轴向右平移 个单位长度,得到函数y=g(x)的图象,写出函数y=g(x)的解析式;
(3)当x∈[0',' π/12]时,求函数f(x)的最大值和最小值.
分析:(1)先由函数图象的周期为π确定ω,再由图象的一个最低点为M(2π/3 ',-' 2),确定A,φ.(2)通过图象变换与解析式的关系确定g(x).(3)由x∈[0',' π/12]确定ωx+φ的范围,从而确定最值.
... ... ...
章末整合PPT,第二部分内容:专题二 三角函数的求值
例2试求 tan 10°+4sin 10°的值.
分析:所求式中含有切函数和弦函数,应先将切化弦通分,然后根据角之间的关系求解.
解:原式=(√3 sin10'°' +4sin10'°' cos10'°' )/cos10'°'
=(√3 sin10'°' +2sin20'°' )/cos10'°' =(√3 sin'(' 30'°-' 20'°)' +2sin20'°' )/cos10'°'
=(√3 sin30'°' cos20'°-' √3 cos30'°' sin20'°' +2sin20'°' )/cos10'°'
=(√3/2 cos20'°' +1/2 sin20'°' )/cos10'°'
=(sin'(' 60'°' +20'°)' )/cos10'°'
=sin80'°' /cos10'°' =1.
... ... ...
章末整合PPT,第三部分内容:专题三 三角函数的化简与证明
例4化简:('(' 1+sinα+cosα')' (sin α/2 '-' cos α/2))/√(2+2cosα)(π<α<2π).
分析:观察知,含有角α/2与其二倍角α,且分母中含有根号,考虑用升幂公式将cos α化为有关cos2α/2的式子,去掉根号.
=(2cos^2 α/2+2sin α/2 cos α/2)(sin α/2 '-' cos α/2)/√(4cos^2 α/2)
=(2cos α/2 (cos α/2+sin α/2)(sin α/2 '-' cos α/2))/2|cos α/2|
=(cos α/2 (sin^2 α/2 '-' cos^2 α/2))/|cos α/2|
=-(cos α/2 cosα)/|cos α/2| .
∵π<α<2π,
∴π/2<α/2<π.
∴cosα/2<0.
∴原式=cos α.
... ... ...
章末整合PPT,第四部分内容:专题四 三角函数性质与变换公式的综合应用
例6当x=π/4时,函数y=f(x)=Asin(x+φ)(A>0)取得最小值,则函数y=f(3π/4 '-' x)是( )
A.奇函数且当x=π/2时取得最大值
B.偶函数且图象关于点(π,0)对称
C.奇函数且当x=π/2时取得最小值
D.偶函数且图象关于点(π/2 ',' 0)对称
解析:∵f(π/4)=-A,
∴sin(π/4+φ)=-1,
∴φ=5π/4+2kπ,k∈Z,∴y=f(3π/4 '-' x)=Asin(-x)=-Asin x,
∴y=f(3π/4 '-' x)是奇函数,且当x=π/2时取得最小值.
答案:C
... ... ...
《章末整合》平面向量初步PPT 题型突破深化提升 例1如图,梯形ABCD中,AB∥CD,点M,N分别是DA,BC的中点,且DC/AB=k,设(AD)=e1,(AB)=e2,以e1,e2为基底表示向量(DC),(BC),(MN). 方法技巧平..
《章末整合》统计与概率PPT 提醒突破深化提升 例1(1)某中学高一年级有560人,高二年级有540人,高三年级有520人,用分层抽样的方法抽取部分样本,若从高一年级抽取28人,则从高二、高三年..
《章末整合提升》元素与物质世界PPT 第一部分内容:一、分类方法及其在生活中的应用 1.元素与物质分类 (1)元素以游离态和化合态存在于自然界中,非常活泼的元素只能以化合态存在。如..
发布于:2020-07-02 09:40:28
0
人教版高中数学必修一A版
《指数》指数函数与对数函数PPT课件
第一部分内容:学习目标
理解n次方根和根式的概念,掌握根式的性质,会进行简单的求n次方根的运算
理解整数指数幂和分数指数幂的意义,并能熟练掌握根式与分数指数幂之间的相互转化
理解指数幂的含义及其运算性质
会根据已知条件,利用指数幂的运算性质、根式的性质进行相关求值运算
... ... ...
指数PPT,第二部分内容:自主学习
预习教材P104-P109,并思考以下问题:
1.n次方根是怎样定义的?
2.根式的定义是什么?它有哪些性质?
3.有理数指数幂的含义是什么?怎样理解分数指数幂?
4.有理指数幂有哪些运算性质?
1.n次方根
■名师点拨
0的任何次方根都是0,即n0=0.
(1)定义:式子_____叫做根式,这里n叫做__________,a叫做__________.
(2)性质:(n>1,且n∈N*)
①(na)n=_____.
②nan=____,n为奇数, _____,n为偶数.
■名师点拨
nan与(na)n的区别
(1)nan是实数an的n次方根,是一个恒有意义的式子,不受n的奇偶限制,但这个式子的值受n的奇偶限制.
(2)(na)n是实数a的n次方根的n次幂,其中实数a的取值由n的奇偶决定.其算法是对a先开方,后乘方(都是n次),结果恒等于a.
3.分数指数幂的意义
■名师点拨
分数指数幂amn不可以理解为mn个a相乘.
4.指数幂的运算性质
(1)aras=_____ (a>0,r,s∈R).
(2)(ar)s=_____ (a>0,r,s∈R).
(3)(ab)r=_____ (a>0,b>0,r∈R).
判断正误(正确的打“√”,错误的打“×”)
(1)当n∈N*时,(n-3)n有意义.( )
(2)(π-4)2=4-π.( )
(3)只要根式有意义,都能化成分数指数幂的形式.( )
(4)0的任何指数幂都等于0.( )
81的4次方根是( )
A.2 B.±2
C.3 D.±3
... ... ...
指数PPT,第三部分内容:讲练互动
根式的化简与求值
求下列各式的值.
(1) 3(-2)3; (2) 4(-3)2;
(3) 8(3-π)8; (4) x2-2xy+y2+7(y-x)7.
根式的化简与求值的思路及注意点
(1)思路:首先要分清根式为奇次根式还是偶次根式,然后运用根式的性质进行化简.
(2)注意点:
①正确区分(na)n与nan两式;
②运算时注意变式、整体代换,以及平方差、立方差和完全平方、完全立方公式的运用,必要时要进行分类讨论.
1.下列关系式中,根式与分数指数幂的互化正确的是________(只填序号).
①-x=(-x)12(x>0);
②6y2=y13(y<0);
③x-34=41x3(x>0);
④x-13=-3x(x≠0).
2.用分数指数幂的形式表示下列各式(a>0,b>0):
(1)a2a;(2)3a2•a3;(3)(3a)2•ab3;(4)a26a5.
利用指数幂的性质化简求值
计算下列各式(式中字母都是正数):
(1)2350+2-2×214-12-(0.01)0.5;
(2)2790.5+0.1-2+21027-23-3π0+3748;
(3)(a-2b-3)•(-4a-1b)÷(12a-4b-2c);
(4)23a2÷46a•b•3b3.
利用指数幂的运算性质化简求值的方法
(1)进行指数幂的运算时,一般化负指数为正指数,化根式为分数指数幂,化小数为分数,同时兼顾运算的顺序.
(2)在明确根指数的奇偶(或具体次数)时,若能明确被开方数的符号,则可以对根式进行化简运算.
(3)对于含有字母的化简求值的结果,一般用分数指数幂的形式表示.
... ... ...
指数PPT,第四部分内容:达标规划
1.将532写成根式的形式,正确的是( )
A.352 B.35
C.532 D.53
2.计算4(-5)4的结果是( )
A.5B.-5
C.±5D.不确定
3.若a<14,则化简(4a-1)2的结果是( )
A.4a-1 B.1-4a
C.-4a-1 D.-1-4a
... ... ...
《章末复习提升课》指数函数、对数函数与幂函数PPT课件 综合提高 指数、对数的运算 例1 化简:(1)(8) -23(3102)92105; (2)2log32-log3329+log38-25log53. 规律方法 指数、对数的..
《函数的应用》指数函数、对数函数与幂函数PPT课件 第一部分内容:考点 指数、对数函数模型在实际问题中的应用 根据实际问题建立函数模型 学习目标 会利用已知函数模型解决实际问题 ..
《增长速度的比较》指数函数、对数函数与幂函数PPT课件 第一部分内容:学习目标 了解平均变化率描述增长速度的概念 了解在实际生活中不同增长规律的函数模型 ... ... ... 增长速度的..
发布于:2020-07-02 09:40:10
0
人教版高中数学必修一A版
《三角函数的图象与性质》三角函数PPT(第二课时正、余弦函数的周期性与奇偶性)
第一部分内容:学习目标
了解周期函数的概念
理解正弦函数与余弦函数的周期性,会求函数的周期
理解三角函数的奇偶性以及对称性,会判断给定函数的奇偶性
... ... ...
三角函数的图象与性质PPT,第二部分内容:自主学习
预习教材P201-P203,并思考以下问题:
1.周期函数的定义是什么?
2.如何利用周期函数的定义求正、余弦函数的周期?
3.正、余弦函数的奇偶性分别是什么?
1.函数的周期性
(1)周期函数:对于函数f(x),如果存在一个______________,使得当x取定义域内的每一个值时,都有_________________,那么函数f(x)就叫做周期函数.非零常数T叫做这个函数的周期.
(2)最小正周期:如果在周期函数f(x)的所有周期中存在一个最小的______,那么这个最小______就叫做f(x)的_____________.
■名师点拨
对周期函数的两点说明
(1)并不是每一个函数都是周期函数,若函数具有周期性,则其周期也不一定唯一.
(2)如果T是函数f(x)的一个周期,则nT(n∈Z且n≠0)也是f(x)的周期.
2.正弦函数、余弦函数的周期性和奇偶性
■名师点拨
(1)正、余弦函数的周期性
①正弦函数和余弦函数所具有的周期性实质上是由终边相同的角具有的周期性所决定的;
②由诱导公式sin(x+2kπ)=sin x(k∈Z),cos(x+2kπ)=
cos x(k∈Z)也可以说明它们的周期性.
③函数y=Asin(ωx+φ)及y=Acos(ωx+φ)(其中A,ω,φ为常数,且A≠0,ω>0)的周期T=2πω.
(2)关于正、余弦函数的奇偶性
①正弦函数是奇函数,余弦函数是偶函数,反映在图象上,正弦曲线关于原点O对称,余弦曲线关于y轴对称;
②正弦曲线、余弦曲线既是中心对称图形又是轴对称图形.
判断正误(正确的打“√”,错误的打“×”)
(1)若sinπ4+π2=sinπ4,则π2是正弦函数y=sin x的一个周期.( )
(2)函数y=sin x,x∈(-π,π]是奇函数.( )
(3)因为sin(2x+2π)=sin 2x,所以函数y=sin 2x的最小正周期为2π.( )
(4)若T是函数f(x)的周期,则kT,k∈N*也是函数f(x)的周期.( )
下列函数中,最小正周期为4π的是( )
A.y=sin x B.y=cos x
C.y=sinx2 D.y=cos 2x
函数y=2sin2x+π2是( )
A.周期为π的奇函数 B.周期为π的偶函数
C.周期为2π的奇函数 D.周期为2π的偶函数
... ... ...
三角函数的图象与性质PPT,第三部分内容:讲练互动
正、余弦函数的周期问题
求下列三角函数的最小正周期T:
(1)f(x)=sinx+π3;
(2)f(x)=12cos(2x+π3);
(3)f(x)=|sin x|.
求函数周期的方法
(1)定义法:紧扣周期函数的定义,寻求对任意实数x都满足f(x+T)=f(x)的非零常数T.该方法主要适用于抽象函数.
(2)公式法:对形如y=Asin(ωx+φ)和y=Acos(ωx+φ)(其中A,ω,φ是常数,且A≠0,ω>0)的函数,可利用T=2πω来求.
(3)图象法:可画出函数的图象,借助于图象判断函数的周期,特别是对于含绝对值的函数一般采用此法.
1.设函数f(x)=sin12x-π3,则f(x)的最小正周期为( )
A.π2 B.π
C.2π D.4π
2.设a>0,若函数y=sin(ax+π)的最小正周期是π,则a=________.
正、余弦函数的奇偶性问题
判断下列函数的奇偶性.
(1)f(x)=cos2x+5π2;
(2)f(x)=sin(cos x).
利用定义判断函数奇偶性的三个步骤
[注意]与三角函数相关的奇偶性问题,往往需要先利用诱导公式化简,再判断函数的奇偶性.
... ... ...
三角函数的图象与性质PPT,第四部分内容:达标反馈
1.设函数f(x)=sin(2x-π3),则f(x)的最小正周期为( )
A.π2 B.π
C.2π D.4π
2.已知a∈R,函数f(x)=sin x-|a|,x∈R为奇函数,则a等于________.
3.函数f(x)=2cos 2x+1的图象关于________对称(填“原点”或“y轴”).
4.判断下列函数的奇偶性:
(1)f(x)=sin3x4+3π2;
(2)f(x)=sin |x|;
... ... ...
《章末复习课》三角函数PPT 同角三角函数基本关系和诱导公式的应用 【例1】(1)已知sin(-+)+2cos(3-)=0,则sin +cos sin -cos =________. (2)已知f()=sin2-cos2-tan-+sin..
《章末复习提升课》三角函数PPT 综合提高 同角三角函数基本关系式和诱导公式 已知cos(+)=-12,且角在第四象限,计算: (1)sin(2-); (2)sin[+(2n+1)]+sin(+)sin(-)cos..
《三角函数的应用》三角函数PPT下载 第一部分内容:学 习 目 标 1.了解三角函数是描述周期变化现象的重要函数模型,并会用三角函数模型解决一些简单的实际问题.(重点) 2.实际问题抽..
发布于:2020-06-28 10:32:21
0
人教版高中数学必修一A版
《三角函数的应用》三角函数PPT课件
第一部分内容:学习目标
了解三角函数是描述周期变化现象的重要函数模型
会用三角函数模型解决简单的实际问题
... ... ...
三角函数的应用PPT,第二部分内容:自主学习
预习教材P242-P248,并思考以下问题:
1.在简谐运动中,y=Asin(ωx+φ)的初相、振幅、周期分别为多少?
2.解三角函数应用题有哪四步?
1.函数y=Asin(ωx+φ),A>0,ω>0中参数的物理意义
■名师点拨
当A<0或ω<0时,应先用诱导公式将x的系数或三角函数符号前的数化为正数,再确定初相φ.如函数y=-sin2x-π4的初相不是φ=-π4.
2.三角函数模型的建立程序
判断正误(正确的打“√”,错误的打“×”)
(1)函数y=Asin(ωx+φ),x∈R的最大值为A.( )
(2)函数y=Asin(ωx-φ)的初相为φ.( )
(3)“五点法”作函数y=2sinx+π3在一个周期上的简图时,第一个点为π3,0.( )
函数y=2sinx2+π5的周期、振幅依次是( )
A.4π,-2 B.4π,2
C.π,2 D.π,-2
函数y=Asin(ωx+φ)+k的图象如图,则它的振幅A与最小正周期T分别是( )
A.A=3,T=5π6 B.A=3,T=5π3
C.A=32,T=5π6 D.A=32,T=5π3
已知某人的血压满足函数解析式f(t)=24sin(160πt)+115.其中f(t)为血压(单位:mmHg),t为时间(单位:min),则此人每分钟心跳的次数(心跳次数即求频率)为( )
A.60 B.70
C.80 D.90
已知电流强度I(A)随时间t(s)变化的关系是I=5sin100πt+π3,则当t=1200s时,电流强度为( )
A.5A B.2.5A
C.2A D.-5A
... ... ...
三角函数的应用PPT,第三部分内容:讲练互动
三角函数在物理中的应用
已知弹簧挂着的小球做上下振动,它离开平衡位置(静止时的位置)的距离h(cm)与时间t(s)的函数关系式为h=3sin2t+π4.
(1)求小球开始振动的位置;
(2)求小球第一次上升到最高点和下降到最低点时的坐标.
利用三角函数处理物理学问题的策略
(1)常涉及的物理学问题有单摆,光波,电流,机械波等,其共同的特点是具有周期性.
(2)明确物理概念的意义,此类问题往往涉及诸如频率、振幅等概念,因此要熟知其意义并与对应的三角函数知识结合解题.
三角函数在实际生活中的应用
如图一个水轮的半径为4 m,水轮圆心O距离水面2 m,已知水轮每分钟转动5圈,当水轮上点P从水中浮现(图中点P0)时开始计算时间.
(1)将点P距离水面的高度z(m)表示为时间t(s)的函数;
(2)求点P第一次到达最高点需要多长时间?
... ... ...
三角函数的应用PPT,第四部分内容:达标反馈
1.商场人流量被定义为每分钟通过入口的人数,五一节某商场的人流量满足函数F(t)=50+4sint2(t≥0),则在下列哪个时间段内人流量是增加的( )
A.[0,5] B.[5,10]
C.[10,15] D.[15,20]
2.一弹簧振子的位移y与时间t的函数关系式为y=Asin(ωt+φ)(A>0,ω>0),若弹簧振子运动的振幅为3,周期为2π7,初相为π6,则这个函数的解析式为________.
3.某动物种群数量1月1日低至700,7月1日高至900,其总量在此两值之间依正弦型曲线变化.
(1)求出种群数量y关于时间t的函数解析式;(其中t以年初以来经过的月份数为计量单位)
(2)画出种群数量y关于时间t变化的草图.
... ... ...
《章末复习课》三角函数PPT 同角三角函数基本关系和诱导公式的应用 【例1】(1)已知sin(-+)+2cos(3-)=0,则sin +cos sin -cos =________. (2)已知f()=sin2-cos2-tan-+sin..
《章末复习提升课》三角函数PPT 综合提高 同角三角函数基本关系式和诱导公式 已知cos(+)=-12,且角在第四象限,计算: (1)sin(2-); (2)sin[+(2n+1)]+sin(+)sin(-)cos..
《三角函数的应用》三角函数PPT下载 第一部分内容:学 习 目 标 1.了解三角函数是描述周期变化现象的重要函数模型,并会用三角函数模型解决一些简单的实际问题.(重点) 2.实际问题抽..
发布于:2020-05-03 14:11:57
0
人教版高中数学必修一A版
《章末复习提升课》三角函数PPT
同角三角函数基本关系式和诱导公式
已知cos(π+α)=-12,且角α在第四象限,计算:
(1)sin(2π-α);
(2)sin[α+(2n+1)π]+sin(π+α)sin(π-α)cos(α+2nπ)(n∈Z).
(1)同角三角函数基本关系的应用
①已知一个三角函数求另外两个:利用平方关系、商式关系直接求解或解方程(组)求解.
②已知正切,求含正弦、余弦的齐次式;
(i)齐次式为分式时,分子分母同除以cos α或cos2α,化成正切后代入.
(ii)齐次式为整式时,分母看成1,利用1=sin2α+cos2α代入,再通过分子分母同除以cos α或cos2α化切.
(2)用诱导公式化简求值的方法
①对于三角函数式的化简求值,关键在于根据给出角的特点,将角化成2kπ±α,π±α,π2±α,32π±α(或k•π2±α,k∈Z)的形式,再用“奇变偶不变,符号看象限”来化简.
②解决“已知某个三角函数值,求其他三角函数值”的问题,关键在于观察分析条件角与结论角,理清条件与结论之间的差异,将已知和未知联系起来,还应注意整体思想的应用.
三角函数的图象及变换
已知函数f(x)=Asin(ωx+φ)(A>0,ω>0,0<φ<π2)的图象上的一个最低点为M2π3,-2,周期为π.
(1)求f(x)的解析式;
(2)将y=f(x)的图象上的所有点的横坐标伸长到原来的2倍(纵坐标不变),然后再将所得的图象沿x轴向右平移π6个单位,得到函数y=g(x)的图象,写出函数y=g(x)的解析式.
(1)由图象或部分图象确定解析式y=Asin(ωx+φ)中的参数
①A:由最大值、最小值来确定A.
②ω:通过求周期T来确定ω.
③φ:利用已知点列方程求出.
(2)函数y=sin x的图象变换到y=Asin(ωx+φ),(A>0,ω>0)x∈R图象的两种方法
三角函数的性质
已知函数f(x)=4tan xsinπ2-x•cosx-π3-3.
(1)求f(x)的定义域与最小正周期;
(2)讨论f(x)在区间-π4,π4上的单调性.
(1)三角函数的两条性质
①周期性:函数y=Asin(ωx+φ)和y=Acos(ωx+φ)的最小正周期为2π|ω|,y=tan(ωx+φ)的最小正周期为π|ω|.
②奇偶性:三角函数中奇函数一般可化为y=Asin ωx或y=
Atan ωx,而偶函数一般可化为y=Acos ωx+B的形式.
(2)求三角函数值域(最值)的方法
①利用sin x,cos x的有界性.
②从y=Asin(ωx+φ)+k的形式逐步分析ωx+φ的范围,根据正弦函数单调性写出函数的值域.
③换元法:把sin x或cos x看作一个整体,可化为求函数在区间上的值域(最值)问题.
... ... ...
《章末复习提升课》平面向量初步PPT 综合提高 平面向量的有关概念 例1 给出下列命题: ①有向线段就是向量,向量就是有向线段; ②向量a与向量b平行,则a与b的方向相同或相反; ③向..
《章末复习提升课》统计与概率PPT 综合提高 抽样方法 例1 (1)在简单随机抽样中,某一个个体被抽到的可能性( ) A.与第几次抽样有关,第一次被抽到的可能性最大 B.与第几次抽样有关,..
《章末复习提升课》指数函数、对数函数与幂函数PPT课件 综合提高 指数、对数的运算 例1 化简:(1)(8) -23(3102)92105; (2)2log32-log3329+log38-25log53. 规律方法 指数、对数的..
发布于:2020-05-03 14:11:57
0
人教版高中数学必修一A版
《三角恒等变换》三角函数PPT(第4课时二倍角的正弦、余弦、正切公式)
第一部分内容:学习目标
会推导二倍角的正弦、余弦、正切公式
能够灵活运用二倍角公式解决求值、化简和证明等问题
... ... ...
三角恒等变换PPT,第二部分内容:自主学习
预习教材P220-P223,并思考以下问题:
1.在公式C(α+β),S(α+β)和T(α+β)中,若α=β,公式还成立吗?
2.在上述公式中,若α=β,能得出什么结论?
二倍角的正弦、余弦、正切公式
■名师点拨
正确理解二倍角公式
(1)要注意公式应用的前提是所含各三角函数有意义.
(2)倍角公式中的“倍角”是相对的,对于两个角的比值等于2的情况都成立,如4α是2α的2倍,α是α2的2倍.这里蕴含着换元思想.这就是说,“倍”是相对而言的,是描述两个数量之间的关系的.
判断正误(正确的打“√”,错误的打“×”)
(1)10α是5α的倍角,5α是5α2的倍角.( )
(2)二倍角的正弦、余弦、正切公式的适用范围是任意角.( )
(3)存在角α,使得sin 2α=2sin α成立.( )
(4)对于任意角α,总有tan 2α=2tan α1-tan2α.( )
已知sin α=35,cos α=45,则sin 2α等于( )
A.75 B.125
C.1225 D.2425
计算1-2sin222.5°的结果等于( )
A.12 B.22
C.33 D.32
... ... ...
三角恒等变换PPT,第三部分内容:讲练互动
求下列各式的值.
(1)sinπ8cosπ8;
(2)cos2π6-sin2π6;
(3)2tan 150°1-tan2150°;
(4)cos π5cos 2π5.
给角求值问题的两类解法
(1)直接正用、逆用二倍角公式,结合诱导公式和同角三角函数的基本关系对已知式进行转化,一般可以化为特殊角.
(2)若形式为几个非特殊角的三角函数式相乘,则一般逆用二倍角的正弦公式,在求解过程中,需利用互余关系配凑出应用二倍角公式的条件,使得问题出现可以连用二倍角的正弦公式的形式.
已知π2<α<π,sin α=45.
(1)求tan 2α的值;
(2)求cos2α-π4的值.
三角函数求值问题的一般思路
(1)一是对题设条件变形,将题设条件中的角、函数名向结论中的角、函数名靠拢;另一种是对结论变形,将结论中的角、函数名向题设条件中的角、函数名靠拢,以便将题设条件代入结论.
(2)注意几种公式的灵活应用,如:
①sin 2x=cosπ2-2x=cos2π4-x
=2cos2π4-x-1=1-2sin2π4-x;
②cos 2x=sinπ2-2x=sin2π4-x
=2sinπ4-xcosπ4-x.
三角函数式的化简与证明
(1)化简的方法
①弦切互化,异名化同名,异角化同角;②降幂或升幂;③一个重要结论:(sin θ±cos θ)2=1±sin 2θ.
(2)证明三角恒等式的方法
①从复杂的一边入手,证明一边等于另一边;②比较法,左边-右边=0,左边右边=1;③分析法,从要证明的等式出发,一步步寻找等式成立的条件.
... ... ...
三角恒等变换PPT,第四部分内容:达标反馈
1.已知sin α=3cos α,那么tan 2α的值为( )
A.2 B.-2
C.34 D.-34
2.已知sin θ2+cos θ2=233,那么sin θ=_____,cos 2θ=______.
3.cos π12-sin π12cos π12+sin π12的值为________.
4.已知α∈π2,π,sin α=55.
(1)求sin 2α,cos 2α的值;
(2)求cos5π6-2α的值.
... ... ...
《章末复习课》三角函数PPT 同角三角函数基本关系和诱导公式的应用 【例1】(1)已知sin(-+)+2cos(3-)=0,则sin +cos sin -cos =________. (2)已知f()=sin2-cos2-tan-+sin..
《章末复习提升课》三角函数PPT 综合提高 同角三角函数基本关系式和诱导公式 已知cos(+)=-12,且角在第四象限,计算: (1)sin(2-); (2)sin[+(2n+1)]+sin(+)sin(-)cos..
《三角函数的应用》三角函数PPT下载 第一部分内容:学 习 目 标 1.了解三角函数是描述周期变化现象的重要函数模型,并会用三角函数模型解决一些简单的实际问题.(重点) 2.实际问题抽..
发布于:2020-05-03 14:11:56
0
人教版高中数学必修一A版
《函数y=Asin(ωx+φ)》三角函数PPT(第1课时函数y=Asin(ωx+φ)的图象及变换)
第一部分内容:学习目标
会用“五点法”作函数 y=Asin(ωx+φ)的图象
会通过变换由 y=sin x 的图象得到 y=Asin(ωx+φ)的图象
... ... ...
函数y=Asin(ωx+φ)PPT,第二部分内容:自主学习
预习教材P231-P239,并思考以下问题:
1.如何用 y=sin x的图象变换为 y=sin(x+φ)(其中 φ≠0)的图象?
2.如何用 y=sin x的图象变换为 y=Asin x(A>0且 A≠1)的图象?
3.如何用 y=sin x的图象变换为 y=sin ωx(ω>0 且 ω≠1)的图象?
A、ω、φ对函数y=Asin(ωx+φ)的图象的影响
(1)φ对函数y=sin(x+φ)的图象的影响
D→y=sin(x+φ)的图象
(2)ω(ω>0)对函数y=sin(ωx+φ)的图象的影响
(3)A(A>0)对函数y=Asin(ωx+φ)的图象的影响
■名师点拨
A,ω,φ对函数 y=Asin(ωx+φ)的图象的影响
(1)A越大,函数图象的最大值越大,最大值与 A 是正比例关系.
(2)|ω|越大,函数图象的周期越小,|ω|越小,周期越大,周期与|ω|为反比例关系.
(3)φ> 0 时,函数图象向左平移,φ<0 时,函数图象向右平移,即“加左减右”.
判断正误(正确的打“√”,错误的打“×”)
(1)将函数y=sin x的图象向左平移π2个单位,得到函数y=cos x的图象.( )
(2)将函数y=sin x图象上各点的纵坐标变为原来的2倍,便得到函数y=2sin x的图象.( )
(3)把函数y=cos x图象上各点的横坐标伸长到原来的3倍就得到函数y=cos 3x的图象.( )
利用“五点法”作函数y=sin12x,x∈[0,2π]的图象时,所取的五点的横坐标为( )
A.0,π2,π,3π2,2π
B.0,π4,π2,3π4,π
C.0,π,2π,3π,4π
D.0,π6,π3,π2,2π3
将函数y=12cos x图象上各点的纵坐标伸长为原来的4倍,横坐标不变,得到的函数解析式为( )
A.y=4cos x B.y=2cos x
C.y=cos x D.y=14cos x
... ... ...
函数y=Asin(ωx+φ)PPT,第三部分内容:讲练互动
“五点法”作图
已知函数y=3sinx2+π6+3(x∈R),用“五点法”画出它在一个周期内的闭区间上的图象.
1.(变条件)将本例函数解析式中的x2改为x,其他条件不变,结果如何?
2.(变条件)将本例函数解析式中的π6改为π3,其他条件不变,结果如何?
(1)“五点法”作图的实质
利用“五点法”作函数f(x)=Asin(ωx+φ)的图象,实质是利用函数的三个零点、两个最值点画出函数在一个周期内的图象.
(2)“五点法”
作定区间上图象的关键是列表,列表的方法是:
①计算 x 取端点值时的 ωx+φ 的范围;
②取出 ωx+φ 范围内的“五点”,并计算出相应的 x 值;
③利用 ωx+φ 的值计算 y 值;
④描点(x,y),连线得到函数图象.
三角函数的图象变换
(1)有下列四种变换方式:
①向左平移π4个单位长度,再将横坐标变为原来的12(纵坐标不变);
②横坐标变为原来的12(纵坐标不变),再向左平移π8个单位长度;
③横坐标变为原来的12(纵坐标不变),再向左平移π4个单位长度;
④向左平移π8个单位长度,再将横坐标变为原来的12(纵坐标不变).
其中能将正弦函数 y=sin x 的图象变为 y=sin2x+π4的图象的是( )
A.①和② B.①和③
C.②和③ D.②和④
(2)(2018•高考天津卷改编)将函数 y=sin2x+π5的图象向右平移π10个单位长度,所得图象对应的函数解析式为__________.
(1)图象平移变换的方法
①确定平移方向和平移的量是解决平移变换的关键.
②当x的系数是1时,若φ>0,则左移φ个单位;
若φ<0,则右移|φ|个单位.
③当x的系数是ω(ω>0)时,若φ>0,则左移φω个单位;若φ<0,则右移|φ|ω个单位.
(2)三角函数图象伸缩变换的方法
... ... ...
函数y=Asin(ωx+φ)PPT,第四部分内容:达标反馈
1.要得到 y=tan x 的图象,只需把 y=tanx+π6的图象( )
A.向左平移π6个单位 B.向左平移π12个单位
C.向右平移π12个单位 D.向右平移π6个单位
2.将函数y=sinx-π3图象上各点的纵坐标不变,横坐标伸长为原来的5倍,可得到函数____________的图象.
3.已知函数f(x)的图象上每一点的纵坐标保持不变,横坐标扩大到原来的2倍,然后把所得的图象沿x轴向左平移π2个单位长度,这样得到的图象与y=12sin x的图象相同,求f(x)的解析式.
发布于:2020-05-03 14:11:56
0
人教版高中数学必修一A版
《函数y=Asin(ωx+φ)》三角函数PPT(第2课时函数y=Asin(ωx+φ)的性质及应用)
第一部分内容:讲练互动
由图象求三角函数的解析式
函数f(x)=Asin(ωx+φ)A>0,ω>0,|φ|<π2的部分图象如图所示,则f(x)的解析式为______________.
根据函数的部分图象求解析式的方法
(1)直接从图象确定振幅和周期,则可确定函数式y=Asin(ωx+φ)中的参数A和ω,再选取最大值点的数据代入ωx+φ=2kπ+π2,k∈Z,结合φ的范围求出φ.
(2)通过若干特殊点代入函数式,通过解方程组求相关待定系数A,ω,φ.
(3)运用逆向思维的方法,先确定函数的基本函数式y=Asin ωx,再根据图象平移规律确定相关的参数.
1.已知函数y=Asin(ωx+φ)+B的一部分图象如图所示,如果A>0,ω>0,|φ|<π2,则( )
A.A=4 B.ω=1
C.φ=π6 D.B=4
2.已知函数y=Asin(ωx+φ)A>0,ω>0,0<φ <π2的最小值是-5,图象上相邻两个最高点与最低点的横坐标相差π4,且图象经过点0,52,求这个函数的解析式.
三角函数图象的对称性
已知函数f(x)=sinωx+π3(ω>0)的最小正周期为π,求该函数的对称轴方程.
三角函数对称轴、对称中心的求法
对称轴 对称中心
y=Asin(ωx+φ) 令ωx+φ=kπ+π2(k∈Z) 令ωx+φ=kπ(k∈Z),求对称中心横坐标
y=Acos(ωx+φ) 令ωx+φ=kπ(k∈Z) 令ωx+φ=kπ+π2(k∈Z),求对称中心横坐标
y=Atan(ωx+φ) 无 令ωx+φ=kπ2(k∈Z),求对称中心横坐标
三角函数性质的综合应用
(2019•沈阳质量检测(一))已知函数f(x)=sin2x+π3,以下命题中为假命题的是( )
A.函数f(x)的图象关于直线x=π12对称
B.x=-π6是函数f(x)的一个零点
C.函数f(x)的图象可由g(x)=sin 2x的图象向左平移π3个单位长度得到
D.函数f(x)在0,π12上是增函数
(1)正、余弦型函数奇偶性的判断方法
正弦型函数y=Asin(ωx+φ)和余弦型函数y=Acos(ωx+φ)不一定具备奇偶性.对于函数y=Asin(ωx+φ),当φ=kπ(k∈Z)时为奇函数,当φ=kπ±π2(k∈Z)时为偶函数;对于函数y=Acos(ωx+φ),当φ=kπ(k∈Z)时为偶函数,当φ=kπ±π2(k∈Z)时为奇函数.
(2)确定函数y=Asin(ωx+φ)(A>0,ω>0)单调区间的方法
采用“换元”法整体代换,将ωx+φ看作一个整体,可令“z=ωx+φ”,即通过求y=Asin z的单调区间从而求出函数y=Asin(ωx+φ)的单调区间.若ω<0,则可利用诱导公式先将x的系数转变为正数,再求单调区间.
... ... ...
函数y=Asin(ωx+φ)PPT,第二部分内容:达标反馈
1.(2019•北京海淀北理工附中期中)将函数y=sin2x+π4 的图象向右平移π8个单位长度,所得图象所对应的函数是( )
A.非奇非偶函数 B.既奇又偶函数
C.奇函数 D.偶函数
2.函数f(x)=sin(2x+φ)(-π<φ<0)图象的一条对称轴是直线x=π6,则φ的值为________.
3.函数f(x)=Asin(ωx+φ)ω>0,A>0,|φ|<π2的图象如图所示.
(1)求函数f(x)的解析式;
(2)求函数y=f(x)在-π4,π6上的值域.
... ... ...
发布于:2020-05-03 14:11:56
0
人教版高中数学必修一A版
《三角函数的图象与性质》三角函数PPT(第三课时正、余弦函数的单调性与最值)
第一部分内容:学习目标
理解正弦函数与余弦函数的单调性,会求函数的单调区间
会利用三角函数单调性比较三角函数值的大小
会利用三角函数单调性求函数的最值和值域
... ... ...
三角函数的图象与性质PPT,第二部分内容:自主学习
预习教材P204-P207,并思考以下问题:
1.正、余弦函数的单调区间相同吗?它们分别是什么?
2.正、余弦函数的最值分别是多少?
正弦、余弦函数的图象和性质
■名师点拨
正、余弦函数不是定义域上的单调函数,如说“正弦函数在第一象限是增函数”也是错误的,因为在第一象限的单调递增区间有无穷多个,在每个单调增区间上,y=sin x都是从0增加到1,但不能看作一个单调区间.
判断正误(正确的打“√”,错误的打“×”)
(1)函数y=12sin x的最大值为1.( )
(2)∃x0∈[0,2π],满足cos x0=2.( )
(3)正弦函数、余弦函数在定义域内都是单调函数.( )
在下列区间中,使函数y=sin x为增函数的是( )
A.[0,π] B.π2,3π2
C.-π2,π2 D.[π,2π]
函数y=1-2cosπ2x的最小值、最大值分别是( )
A.-1,3 B.-1,1
C.0,3 D.0,1
... ... ...
三角函数的图象与性质PPT,第三部分内容:讲练互动
正、余弦函数的单调性
求下列函数的单调递减区间:
(1)y=12cos2x+π3;
(2)y=2sinπ4-x.
求正、余弦函数的单调区间的策略
(1)结合正、余弦函数的图象,熟记它们的单调区间.
(2)在求形如y=Asin(ωx+φ)(A>0,ω>0)的函数的单调区间时,应采用“换元法”整体代换,将“ωx+φ”看作一个整体“z”,即通过求y=Asin z的单调区间而求出原函数的单调区间.求形如y=Acos(ωx+φ)(A>0,ω>0)的函数的单调区间同上.
1.函数y=sinx+π2,x∈R在( )
A.-π2,π2上是增函数
B.[0,π]上是减函数
C.[-π,0]上是减函数
D.[-π,π]上是减函数
2.求函数y=sinx+π4的单调增区间.
比较三角函数值的大小
比较下列各组数的大小.
(1)sin 1017π与sin 1117π;
(2)cos-7π8与cos 6π7;
(3)sin 194°与cos 160°.
比较三角函数值大小的步骤
(1)异名函数化为同名函数;
(2)利用诱导公式把角转化到同一单调区间上;
(3)利用函数的单调性比较大小.
... ... ...
三角函数的图象与性质PPT,第四部分内容:达标反馈
1.下列函数中,在区间π2,π上恒正且是增函数的是( )
A.y=sin x B.y=cos x
C.y=-sin x D.y=-cos x
2.函数y=3cos12x-π4在x=________时,y取最大值.
3.sin21π5________sin425π(填“>”或“<”).
... ... ...
《章末复习课》三角函数PPT 同角三角函数基本关系和诱导公式的应用 【例1】(1)已知sin(-+)+2cos(3-)=0,则sin +cos sin -cos =________. (2)已知f()=sin2-cos2-tan-+sin..
《章末复习提升课》三角函数PPT 综合提高 同角三角函数基本关系式和诱导公式 已知cos(+)=-12,且角在第四象限,计算: (1)sin(2-); (2)sin[+(2n+1)]+sin(+)sin(-)cos..
《三角函数的应用》三角函数PPT下载 第一部分内容:学 习 目 标 1.了解三角函数是描述周期变化现象的重要函数模型,并会用三角函数模型解决一些简单的实际问题.(重点) 2.实际问题抽..
发布于:2020-05-03 14:11:55
0
人教版高中数学必修一A版
《三角恒等变换》三角函数PPT(第1课时两角差的余弦公式)
第一部分内容:学习目标
理解两角差的余弦公式的推导过程
能利用公式进行计算、化简及求值
... ... ...
三角恒等变换PPT,第二部分内容:自主学习
预习教材P215-P217,并思考以下问题:
1.两角差的余弦公式是什么?
2.公式中的α、β是任意的吗?
两角差的余弦公式
公式cos(α-β)=___________________
简记符号C(α-β)
使用条件α,β为任意角
■名师点拨
(1)由C(α-β)可知,只要知道cos α,cos β,sin α,sin β的值,就可以求得cos(α-β)的值.
(2)公式中的α,β都是任意角,既可以是一个角,也可以是几个角的组合.
判断正误(正确的打“√”,错误的打“×”)
(1)对∀α,β∈R,cos(α-β)=cos αcos β+sin αsin β都成立.( )
(2)对于∀α,β,cos(α-β)=cos α-cos β都不成立.( )
设α∈0,π2,若sin α=35,则2cosα-π4等于( )
A.75 B.15
C.-75 D.-15
cos 43°cos 13°+sin 43°sin 13°的值为( )
A.12 B.-12
C.32 D.-32
... ... ...
三角恒等变换PPT,第三部分内容:讲练互动
两角差的余弦公式的简单应用
求下列各式的值:
(1)cos(-375°);
(2)cos5π12cosπ6+cosπ12sinπ6;
(3)12cos 105°+32sin 105°.
利用两角差的余弦公式求值的一般思路
(1)把非特殊角转化为特殊角的差,正用公式直接求解.
(2)在逆用公式解题时,还要善于将特殊的值变形为某特殊角的三角函数值.
给值求值问题的解题策略
(1)从角的关系中找解题思路:已知某些角的三角函数值,求另外一些角的三角函数值,要注意观察已知角与所求表达式中角的关系,根据需要灵活地进行拆角或凑角的变换.
(2)常见角的变换:①α=(α-β)+β;②α=α+β2+α-β2;
③2α=(α+β)+(α-β);④2β=(α+β)-(α-β).
... ... ...
三角恒等变换PPT,第四部分内容:达标反馈
1.sin 11°cos 19°+cos 11°cos 71°的值为( )
A.32 B.12
C.1+32 D.3-12
2.已知cosα-π3=cos α,则tan α=________.
3.若0<α<π2,-π2<β<0,cos α=13,cosβ2=33,求cosα-β2的值.
... ... ...
《章末复习课》三角函数PPT 同角三角函数基本关系和诱导公式的应用 【例1】(1)已知sin(-+)+2cos(3-)=0,则sin +cos sin -cos =________. (2)已知f()=sin2-cos2-tan-+sin..
《章末复习提升课》三角函数PPT 综合提高 同角三角函数基本关系式和诱导公式 已知cos(+)=-12,且角在第四象限,计算: (1)sin(2-); (2)sin[+(2n+1)]+sin(+)sin(-)cos..
《三角函数的应用》三角函数PPT下载 第一部分内容:学 习 目 标 1.了解三角函数是描述周期变化现象的重要函数模型,并会用三角函数模型解决一些简单的实际问题.(重点) 2.实际问题抽..
发布于:2020-05-03 14:11:55
0
人教版高中数学必修一A版
《三角恒等变换》三角函数PPT(第2课时两角和与差的正弦、余弦、正切公式)
第一部分内容:学习目标
理解两角和与差的正弦、余弦、正切公式的推导过程
能够运用两角和与差的正弦、余弦、正切公式解决求值、化简等问题
... ... ...
三角恒等变换PPT,第二部分内容:自主学习
预习教材P217-P220,并思考以下问题:
1.两角和的余弦公式是什么?与两角差的余弦公式有什么不同?
2.两角和与差的正弦、正切公式是什么?
两角和的余弦公式及两角和与差的正弦、正切公式
两角和的余弦cos(α+β)=_______________________C(α+β)
两角和的正弦sin(α+β)=_______________________S(α+β)
两角差的正弦sin(α-β)=_______________________S(α-β)
两角和的正切tan(α+β)=________________T(α+β)α,β,α+β≠kπ+π2(k∈Z)
两角差的正切tan(α-β)=________________T(α-β)α,β,α-β≠kπ+π2(k∈Z)
■名师点拨
公式的记忆方法
(1)理顺公式间的联系.
C(α+β)←D→以-β代βC(α-β)←D→诱导公式S(α-β)←D→以-β代βS(α+β)
(2)注意公式的结构特征和符号规律.
对于公式C(α-β),C(α+β),可记为“同名相乘,符号反”.
对于公式S(α-β),S(α+β),可记为“异名相乘,符号同”.
(3)两角和与差的正切公式中,α,β,α+β,α-β均不等于kπ+π2(k∈Z),这是由正切函数的定义域决定的.
自我检测
判断正误(正确的打“√”,错误的打“×”)
(1)两角和与差的正弦、余弦公式中的角α,β是任意的.( )
(2)存在α,β∈R,使得sin(α-β)=sin α-sin β成立.( )
(3)对于任意α,β∈R,sin(α+β)=sin α+sin β都不成立.( )
(4)存在α,β∈R,使tan(α+β)=tan α+tan β成立.( )
(5)对任意α,β∈R,tan(α+β)=tan α+tan β1-tan αtan β都成立.( )
已知tan α=2,则tanα+π4=( )
A.-3 B.3
C.-4 D.4
cos 75°cos 15°-sin 75°sin 15°的值等于( )
A.12 B.-12
C.0 D.1
... ... ...
三角恒等变换PPT,第三部分内容:讲练互动
求值:(1)cos 105°;
(2)tan 75°;
(3)sin 50°-sin 20°cos 30°cos 20°.
解决给角求值问题的方法
(1)对于非特殊角的三角函数式求值问题,一定要本着先整体后局部的基本原则,如果整体符合三角公式的形式,则整体变形,否则进行各局部的变形.
(2)一般途径有将非特殊角化为特殊角的和或差的形式,化为正负相消的项并消项求值,化分子、分母形式进行约分,解题时要逆用或变用公式.
已知π2<β<α<3π4,cos(α-β)=1213,sin(α+β)=-35,求cos 2α与cos 2β的值.
给值(式)求值的解题策略
(1)当“已知角”有两个时,“所求角”一般表示为两个“已知角”的和或差的形式.
(2)当“已知角”有一个时,此时应着眼于“所求角”与“已知角”的和或差的关系,然后应用诱导公式把“所求角”变成“已知角”.
... ... ...
三角恒等变换PPT,第四部分内容:达标反馈
1.(2019•北京清华附中月考)若tan α=3,tan β=43,则tan(α-β)等于( )
A.3 B.-3
C.13 D.-13
2.函数y=sin2x+π4+sin2x-π4的最小值为( )
A.2 B.-2
C.-2 D.3
3.若cos α=-513,α∈π2,π,则cosα+π6=________.
《章末复习课》三角函数PPT 同角三角函数基本关系和诱导公式的应用 【例1】(1)已知sin(-+)+2cos(3-)=0,则sin +cos sin -cos =________. (2)已知f()=sin2-cos2-tan-+sin..
《章末复习提升课》三角函数PPT 综合提高 同角三角函数基本关系式和诱导公式 已知cos(+)=-12,且角在第四象限,计算: (1)sin(2-); (2)sin[+(2n+1)]+sin(+)sin(-)cos..
《三角函数的应用》三角函数PPT下载 第一部分内容:学 习 目 标 1.了解三角函数是描述周期变化现象的重要函数模型,并会用三角函数模型解决一些简单的实际问题.(重点) 2.实际问题抽..
发布于:2020-05-03 14:11:55
0
人教版高中数学必修一A版
《三角恒等变换》三角函数PPT(第3课时两角和与差的正弦、余弦、正切公式)
第一部分内容:讲练互动
三角函数公式逆用
求值:(1)sin π12-3cos π12;
(2)3-tan 15°1+3tan 15°.
(1)在逆用两角的和与差的正弦和余弦公式时,首先要注意结构是否符合公式特点,其次注意角是否满足要求.
(2)注意特殊角的应用,当式子中出现12,1,32,3等这些数值时,一定要考虑引入特殊角,把“值变角”构造成适合公式的形式.
1.cos 24°cos 36°-cos 66°cos 54°的值等于( )
A.0 B.12
C.32 D.-12
2.已知sin α+cosα-π6=435,则sinα+7π6的值是________.
3.设a=sin 14°+cos 14°,b=sin 16°+cos 16°,则a,b的大小关系是________(用“<”连接).
三角函数公式的活用
计算:(1)tan π9+tan 2π9+3tan π9tan 2π9;
(2)(1+tan 21°)(1+tan 22°)(1+tan 23°)(1+tan 24°).
正切函数公式的变形结论
tan(α+β)(1-tan αtan β)=tan α+tan β;
tan α+tan β+tan αtan βtan(α+β)=tan(α+β);
tan α-tan β=tan(α-β)•(1+tan αtan β);
tan α-tan β-tan αtan βtan(α-β)=tan(α-β).
三角函数式的化简
化简:(1)(tan 10°-3)•cos 10°sin 50°;
(2)sin(α+β)cos α-12[sin(2α+β)-sin β].
三角函数式的化简要遵循“三看”原则,即一看角,二看名,三看式子的结构与特征.
(1)看角的特点,充分利用角之间的关系,尽量向同角转化,利用已知角构建待求角;
(2)看函数名的特点,向同名函数转化,弦切互化;
(3)看式子的结构特点,从整体出发,正用、逆用、变形使用这些公式.
... ... ...
三角恒等变换PPT,第二部分内容:达标反馈
1.sin 20°cos 10°-cos 160°sin 10°=( )
A.-32 B.32
C.-12 D.12
2.在△ABC中,C=120°,tan A+tan B=233,则tan Atan B的值为________.
3.已知sin(α-β)cos α-cos(β-α)sin α=45,β是第三象限角,求sin(β+π4)的值.
... ... ...
《章末复习课》三角函数PPT 同角三角函数基本关系和诱导公式的应用 【例1】(1)已知sin(-+)+2cos(3-)=0,则sin +cos sin -cos =________. (2)已知f()=sin2-cos2-tan-+sin..
《章末复习提升课》三角函数PPT 综合提高 同角三角函数基本关系式和诱导公式 已知cos(+)=-12,且角在第四象限,计算: (1)sin(2-); (2)sin[+(2n+1)]+sin(+)sin(-)cos..
《三角函数的应用》三角函数PPT下载 第一部分内容:学 习 目 标 1.了解三角函数是描述周期变化现象的重要函数模型,并会用三角函数模型解决一些简单的实际问题.(重点) 2.实际问题抽..
发布于:2020-05-03 14:11:55
0
人教版高中数学必修一A版
《诱导公式》三角函数PPT(第1课时诱导公式二、三、四)
第一部分内容:学习目标
理解诱导公式的推导方法
能运用公式进行三角函数式的求值、化简以及证明
... ... ...
诱导公式PPT,第二部分内容:自主学习
预习教材P188-P190,并思考以下问题:
1.π±α,-α的终边与α的终边有怎样的对称关系?
2.诱导公式二、三、四的内容是什么?
1.公式二
角π+α与角α的终边关于_________对称
sin(π+α)=__________,
cos(π+α)=___________,
tan(π+α)=_________
2.公式三
角-α与角α的终边关于_______对称
sin(-α)=___________,
cos(-α)=_________,
tan(-α)=-tan α
3.公式四
角π-α与角α的终边关于_____对称
sin(π-α)=__________,
cos(π-α)=__________,
tan(π-α)=__________
■名师点拨
诱导公式的记忆
(1)记忆方法:2kπ+α,-α,π±α的三角函数值等于α的同名函数值,前面加上一个把α看成锐角时原函数值的符号.
(2)记忆口诀:“函数名不变,符号看象限”.
“口诀”的正确理解:“函数名不变”是指等式两边的三角函数同名;“符号”是指等号右边是正号还是负号;“看象限”是指假设α是锐角,要看原函数名在本公式中角的终边所在象限是取正值还是负值,如sin(π+α),若α看成锐角,则π+α在第三象限,正弦在第三象限取负值,故sin(π+α)=-sin α.
判断正误(正确的打“√”,错误的打“×”)
(1)诱导公式三可以将任意负角的三角函数值转化为正角的三角函数值.( )
(2)对于诱导公式中的角α一定是锐角.( )
(3)由诱导公式三知cos[-(α-β)]=-cos(α-β).( )
(4)在△ABC中,sin(A+B)=sin C.( )
下列式子中正确的是( )
A.sin(π-α)=-sin α
B.cos(π+α)=cos α
C.cos α=sin α
D.sin(2π+α)=sin α
... ... ...
诱导公式PPT,第三部分内容:讲练互动
给角求值问题
利用公式求下列三角函数值:
(1)cos 476π;(2)tan(-855°);
(3)sin(-945°)+cos(-296π);
(4)tan 34π+sin 116π.
1.(2019•重庆一中期末检测)tan5π3=( )
A.-3 B.3
C.-33 D.33
2.求下列各三角函数值:
(1)cos-31π6;
(2)tan(-765°);
(3)sin 4π3•cos 25π6•tan 5π4.
化简求值问题
化简下列各式.
(1)tan(2π-α)sin(-2π-α)cos(6π-α)cos(α-π)sin(5π-α);
(2)sin(1 440°+α)•cos(α-1 080°)cos(-180°-α)•sin(-α-180°).
三角函数式化简的常用方法
(1)利用诱导公式,将任意角的三角函数转化为锐角三角函数.
(2)切化弦:一般需将表达式中的切函数转化为弦函数.
(3)注意“1”的应用:1=sin2α+cos2α=tan π4.
... ... ...
诱导公式PPT,第四部分内容:达标反馈
1.计算cos(-600°)=( )
A.32 B.-32
C.12 D.-12
2.已知cos(α-π)=-513,且α是第四象限角,则sin(-2π+α)等于( )
A.-1213 B.1213
C.±1213 D.512
3.计算tan 690°=________.
4.化简:sin(540°+α)•cos(-α)tan(α-180°).
《章末复习课》三角函数PPT 同角三角函数基本关系和诱导公式的应用 【例1】(1)已知sin(-+)+2cos(3-)=0,则sin +cos sin -cos =________. (2)已知f()=sin2-cos2-tan-+sin..
《章末复习提升课》三角函数PPT 综合提高 同角三角函数基本关系式和诱导公式 已知cos(+)=-12,且角在第四象限,计算: (1)sin(2-); (2)sin[+(2n+1)]+sin(+)sin(-)cos..
《三角函数的应用》三角函数PPT下载 第一部分内容:学 习 目 标 1.了解三角函数是描述周期变化现象的重要函数模型,并会用三角函数模型解决一些简单的实际问题.(重点) 2.实际问题抽..
发布于:2020-05-03 14:11:54
0
人教版高中数学必修一A版
《诱导公式》三角函数PPT(第2课时诱导公式五、六)
第一部分内容:学习目标
掌握诱导公式五、六的推导过程
能利用诱导公式解决简单的求值、化简与证明问题
... ... ...
诱导公式PPT,第二部分内容:自主学习
预习教材P191-P193,并思考以下问题:
1.π2-α的终边与α的终边有怎样的对称关系?
2.诱导公式五、六的内容是什么?
1.公式五、六
2.公式五、六的语言概括
π2±α的正弦(余弦)函数值,分别等于α的_______________函数值,前面加上一个把α看成_______时原函数值的符号.
公式一~六都叫做诱导公式.
■名师点拨
诱导公式五、六反映的是角π2±α与α的三角函数值之间的关系.可借用口诀“函数名改变,符号看象限”来记忆.
判断正误(正确的打“√”,错误的打“×”)
(1)诱导公式五、六中的角α只能是锐角.( )
(2)sinα-π2=cos α.( )
(3)若α为第二象限角,则sinπ2+α=cos α.( )
已知sin α=23,则cosπ2-α等于( )
A.23 B.-23
C.53 D.-53
已知sin(α+π2)=13,α∈(-π2,0),则sin α等于( )
A.-225 B.225
C.-223 D.223
... ... ...
诱导公式PPT,第三部分内容:讲练互动
利用诱导公式求值
(1)已知cos(π+α)=-12,α为第一象限角,求cosπ2+α的值.
(2)已知sinπ3-α=12,求cosπ6+α的值.
解答此类问题要学会发现它们的互余、互补关系:如π3-α与π6+α,π3+α与π6-α,π4-α与π4+α等互余,π3+θ与2π3-θ,π4+θ与3π4-θ等互补,遇到此类问题,不妨考虑两个角的和,要善于利用角的变换来解决问题.
利用诱导公式化简、证明
化简:cos3π2-α•sinπ2-α•sinπ2+αcos5π2-α•sin-3π2-α.
(1)利用诱导公式化简三角函数式的步骤
利用诱导公式可把任意角的三角函数转化为锐角三角函数,即口诀是:“负化正,大化小,化到锐角再查表”.
(2)证明三角恒等式的常用方法
①由左边推至右边或由右边推至左边,遵循的是化繁为简的原则;②证明左边=A,右边=A,则左边=右边,这里的A起着桥梁的作用;③通过作差或作商证明,即左边-右边=0或左边右边=1或右边左边=1.
... ... ...
诱导公式PPT,第四部分内容:达标反馈
1.若sinπ2+θ<0,且cosπ2-θ>0,则θ是( )
A.第一象限角 B.第二象限角
C.第三象限角 D.第四象限角
2.若sin(3π+α)=-12,则cos7π2-α等于( )
A.-12 B.12
C.32 D.-32
3.化简:sinπ2+αcosπ2-αcos(π+α)+sin(π-α)cosπ2+αsin(π+α)
... ... ...
《章末复习课》三角函数PPT 同角三角函数基本关系和诱导公式的应用 【例1】(1)已知sin(-+)+2cos(3-)=0,则sin +cos sin -cos =________. (2)已知f()=sin2-cos2-tan-+sin..
《章末复习提升课》三角函数PPT 综合提高 同角三角函数基本关系式和诱导公式 已知cos(+)=-12,且角在第四象限,计算: (1)sin(2-); (2)sin[+(2n+1)]+sin(+)sin(-)cos..
《三角函数的应用》三角函数PPT下载 第一部分内容:学 习 目 标 1.了解三角函数是描述周期变化现象的重要函数模型,并会用三角函数模型解决一些简单的实际问题.(重点) 2.实际问题抽..
发布于:2020-05-03 14:11:54
0
人教版高中数学必修一A版
《对数函数》指数函数与对数函数PPT(第3课时不同函数增长的差异)
第一部分内容:学习目标
了解常用的描述现实世界中不同增长规律的函数模型,了解直线上升、指数爆炸、对数增长等增长含义
能根据具体问题选择函数模型,构建函数模型求解问题
... ... ...
对数函数PPT,第二部分内容:自主学习
预习教材P136-P138,并思考以下问题:
1.函数y=kx(k>0)、y=ax(a>1)和y=logax(a>1)在(0,+∞)上的单调性是怎样的?
2.函数y=kx(k>0)、y=ax(a>1)和y=logax(a>1)的增长速度有什么不同?
三种函数模型的性质
判断正误(正确的打“√”,错误的打“×”)
(1)增长速度不变的函数模型是一次函数模型.( )
(2)函数y=x2比y=2x增长的速度更快些.( )
(3)当a>1,k>0时,对∀x∈(0,+∞),总有logax 下列函数中随x的增大而增大且速度最快的是( ) A.y=exB.y=lnx C.y=2xD.y=e-x 已知y1=2x,y2=2x,y3=log2x,当2 A.y1>y2>y3 B.y2>y1>y3 C.y1>y3>y2 D.y2>y3>y1 ... ... ... 对数函数PPT,第三部分内容:讲练互动 函数模型的增长差异 四个变量y1,y2,y3,y4随变量x变化的数据如表: 关于x呈指数函数变化的变量是________. 【解析】从表格观察函数值y1,y2,y3,y4的增加值,哪个变量的增加值最大,则该变量关于x呈指数函数变化. 以爆炸式增长的变量呈指数函数变化. 从表格中可以看出,四个变量y1,y2,y3,y4均是从2开始变化,变量y1,y2,y3,y4都是越来越大,但是增长速度不同,其中变量y2的增长速度最快,画出它们的图象(图略),可知变量y2关于x呈指数函数变化.故填y2. 常见的函数模型及增长特点 (1)线性函数模型:线性函数模型y=kx+b(k>0)的增长特点是直线上升,其增长速度不变. (2)指数函数模型:指数函数模型y=ax(a>1)的增长特点是随着自变量的增大,函数值增大的速度越来越快,即增长速度急剧,形象地称为“指数爆炸”. (3)对数函数模型:对数函数模型y=logax(a>1)的增长特点是随着自变量的增大,函数值增大的速度越来越慢,即增长速度平缓. 四个物体同时从某一点出发向前运动,其路程fi(x)(i=1,2,3,4)关于时间x(x>1)的函数关系是f1(x)=x2,f2(x)=2x,f3(x)=log2x,f4(x)=2x,如果它们一直运动下去,最终在最前面的物体具有的函数关系是( ) A.f1(x)=x2B.f2(x)=2x C.f3(x)=log2xD.f4(x)=2x 函数模型的选取 某汽车制造商在2019年初公告:公司计划2019年的生产目标定为43万辆.已知该公司近三年的汽车生产量如下表所示: 年份201620172018 产量8(万)18(万)30(万) 如果我们分别将2016、2017、2018、2019定义为第一、二、三、四年.现在有两个函数模型:二次函数模型f(x)=ax2+bx+c(a≠0),指数函数模型g(x)=a•bx+c(a≠0,b>0,b≠1),哪个模型能更好地反映该公司生产量y与年份x的关系? 不同函数模型的选取标准 不同的函数模型能刻画现实世界中不同的变化规律: (1)线性函数增长模型适合于描述增长速度不变的变化规律; (2)指数函数增长模型适合于描述增长速度急剧的变化规律; (3)对数函数增长模型适合于描述增长速度平缓的变化规律; (4)幂函数增长模型适合于描述增长速度一般的变化规律. ... ... ... 对数函数PPT,第四部分内容:达标反馈 1.下列函数中,增长速度越来越慢的是( ) A.y=6xB.y=log6x C.y=x6D.y=6x 解析:选B.D中一次函数的增长速度不变,A、C中函数的增长速度越来越快,只有B中对数函数的增长速度越来越慢,符合题意. 2.如表是函数值y随自变量x变化的一组数据,由此判断它最可能的函数模型是( ) A.一次函数模型B.二次函数模型 C.指数函数模型D.对数函数模型 解析:选A.随着自变量每增加1函数值增加2,函数值的增量是均匀的,故为线性函数即一次函数模型. 《章末复习提升课》指数函数、对数函数与幂函数PPT课件 综合提高 指数、对数的运算 例1 化简:(1)(8) -23(3102)92105; (2)2log32-log3329+log38-25log53. 规律方法 指数、对数的.. 《函数的应用》指数函数、对数函数与幂函数PPT课件 第一部分内容:考点 指数、对数函数模型在实际问题中的应用 根据实际问题建立函数模型 学习目标 会利用已知函数模型解决实际问题 .. 《增长速度的比较》指数函数、对数函数与幂函数PPT课件 第一部分内容:学习目标 了解平均变化率描述增长速度的概念 了解在实际生活中不同增长规律的函数模型 ... ... ... 增长速度的..
发布于:2020-05-03 14:11:53
0
人教版高中数学必修一A版
《对数函数》指数函数与对数函数PPT课件(第2课时对数函数及其性质的应用)
第一部分内容:学 习 目 标
1.掌握对数函数的单调性,会进行同底对数和不同底对数大小的比较.(重点)
2.通过指数函数、对数函数的学习,加深理解分类讨论、数形结合这两种重要数学思想的意义和作用.(重点)
核 心 素 养
1.通过学习对数函数的单调性的应用,培养逻辑推理素养.
2.借助对数函数性质的综合应用的学习,提升逻辑推理及数学运算素养.
... ... ...
对数函数PPT,第二部分内容:合作探究提素养
比较对数值的大小
【例1】比较下列各组值的大小:
(1)log534与log543;
(2)log132与log152;
(3)log23与log54.
[解] (1)法一(单调性法):对数函数y=log5x在(0,+∞)上是增函数,而34<43,所以log534 法二(中间值法):因为log534<0,log543>0,所以log534 (2)法一(单调性法):由于log132=1log213,log152=1log215, 又因对数函数y=log2x在(0,+∞)上是增函数, 且13>15,所以0>log213>log215, 所以1log213<1log215,所以log132 法二(图象法):如图,在同一坐标系中分别画出y=log13x及y=log15x的图象,由图易知:log132 (3)取中间值1, 因为log23>log22=1=log55>log54, 所以log23>log54. 比较对数值大小的常用方法 1同底数的利用对数函数的单调性. 2同真数的利用对数函数的图象或用换底公式转化. 3底数和真数都不同,找中间量. 提醒:比较数的大小时先利用性质比较出与零或1的大小. 解对数不等式 【例2】已知函数f(x)=loga(x-1),g(x)=loga(6-2x)(a>0,且a≠1). (1)求函数φ(x)=f(x)+g(x)的定义域; (2)试确定不等式f(x)≤g(x)中x的取值范围. [思路点拨] (1)直接由对数式的真数大于0联立不等式组求解x的取值集合. (2)分a>1和0<a<1求解不等式得答案. 常见的对数不等式的三种类型 1形如logax>logab的不等式,借助y=logax的单调性求解,如果a的取值不确定,需分a>1与0<a<1两种情况讨论; 2形如logax>b的不等式,应将b化为以a为底数的对数式的形式,再借助y=logax的单调性求解; 3形如logax>logbx的不等式,可利用图象求解.
发布于:2020-05-03 14:11:53
0
人教版高中数学必修一A版
《章末复习提升课》指数函数与对数函数PPT
指数与对数的运算
求下列各式的值:
(1)827-23-3e•e23+(2-e)2+10lg 2;
(2)lg25+lg 2×lg 500-12lg125-log29×log32.
【解】 (1)827-23-3e•e23+(2-e)2+10lg 2
=233-23-e13•e23+(e-2)+2
=23-2-e+e-2+2=322=94.
(2)lg25+lg 2×lg 500-12lg125-log29×log32
=lg25+lg 2×lg 5+2lg 2-lg15-log39
=lg 5(lg 5+lg 2)+2lg 2-lg 2+1-2
=lg 5+lg 2-1=1-1=0.
(1)指数与对数的运算应遵循的原则
①指数的运算:注意化简顺序,一般负指数先转化成正指数,根式化为分数指数幂运算.另外,若出现分式,则要注意对分子、分母因式分解以达到约分的目的;
②对数的运算:注意公式应用过程中范围的变化,前后要等价,一般本着真数化简的原则进行.
(2)底数相同的对数式化简的两种基本方法
①“收”:将同底的两对数的和(差)收成积(商)的对数;
②“拆”:将积(商)的对数拆成对数的和(差).
指数函数、对数函数的图象问题
若函数y=logax(a>0,且a≠1)的图象如图所示,则下列函数图象正确的是( )
【解析】由题意y=logax(a>0,且a≠1)的图象过(3,1)点,可解得a=3.选项A中,y=3-x=13x,显然图象错误;选项B中,y=x3,由幂函数图象可知正确;选项C中,y=(-x)3=-x3,显然与所画图象不符;选项D中,y=log3(-x)的图象与y=log3x的图象关于y轴对称,显然不符.故选B.
(1)识别函数的图象从以下几个方面入手:
①单调性:函数图象的变化趋势;
②奇偶性:函数图象的对称性;
③特殊点对应的函数值.
(2)已知不能解出的方程或不等式的解求参数的范围常用数形结合的思想解决.
1.已知a>1,b<-1,则函数y=loga(x-b)的图象不经过( )
A.第一象限 B.第二象限
C.第三象限 D.第四象限
2.对a>0且a≠1的所有正实数,函数y=ax+1-2的图象一定经过一定点,则该定点的坐标是________.
... ... ...
《章末复习提升课》平面向量初步PPT 综合提高 平面向量的有关概念 例1 给出下列命题: ①有向线段就是向量,向量就是有向线段; ②向量a与向量b平行,则a与b的方向相同或相反; ③向..
《章末复习提升课》统计与概率PPT 综合提高 抽样方法 例1 (1)在简单随机抽样中,某一个个体被抽到的可能性( ) A.与第几次抽样有关,第一次被抽到的可能性最大 B.与第几次抽样有关,..
《章末复习提升课》指数函数、对数函数与幂函数PPT课件 综合提高 指数、对数的运算 例1 化简:(1)(8) -23(3102)92105; (2)2log32-log3329+log38-25log53. 规律方法 指数、对数的..
发布于:2020-05-03 14:11:53
0
人教版高中数学必修一A版
《章末复习课》指数函数与对数函数PPT
指数与对数的运算
【例1】计算:(1)2log32-log3329+log38-5log53;
(2)1.5-13×-760+80.25×42+(32×3)6--2323.
指数、对数的运算应遵循的原则
指数式的运算首先注意化简顺序,一般负指数先转化成正指数,根式化为分数指数幂运算,其次若出现分式则要注意分子、分母因式分解以达到约分的目的.对数运算首先注意公式应用过程中范围的变化,前后要等价,熟练地运用对数的三个运算性质并结合对数恒等式,换底公式是对数计算、化简、证明常用的技巧.
1.设3x=4y=36,则2x+1y的值为( )
A.6 B.3
C.2 D.1
指数函数、对数函数的图象及应用
【例2】(1)若函数y=logax(a>0,且a≠1)的图象如图所示,则下列函数正确的是( )
(2)已知函数f(x)是定义在R上的偶函数,当x≥0时,f(x)=12x.
①如图,画出函数f(x)的图象;
②根据图象写出f(x)的单调区间,并写出函数的值域.
(1)B [由已知函数图象可得,loga3=1,所以a=3.A项,函数解析式为y=3-x,在R上单调递减,与图象不符;C项中函数的解析式为y=(-x)3=-x3,当x>0时,y<0,这与图象不符;D项中函数解析式为y=log3(-x),在(-∞,0)上为单调递减函数,与图象不符;B项中对应函数解析式为y=x3,与图象相符.故选B.]
... ... ...
《指数函数与对数函数的关系》指数函数、对数函数与幂函数PPT课件 第一部分内容:学习目标 了解反函数的概念,知道指数函数和对数函数互为反函数,弄清它们图像之间的对称关系 利用指..
《指数函数与对数函数的关系》指数函数、对数函数与幂函数PPT 第一部分内容:课标阐释 1.了解反函数的概念,知道指数函数和对数函数互为反函数,弄清它们的图像间的对称关系. 2.会求简..
《章末复习课》牛顿运动定律PPT 第一部分内容:巩固层知识整合 [核心速填] 1.力与运动的关系:力可以_____物体的运动状态. 2.牛顿第一定律:一切物体总保持静止或__________状态,..
发布于:2020-05-03 14:11:53
0
人教版高中数学必修一A版
《指数函数》指数函数与对数函数PPT(第2课时指数函数及其性质的应用)
第一部分内容:学习目标
能利用指数函数的单调性比较与指数有关的大小问题
能借助指数函数的单调性求解指数方程与指数不等式问题
会求与指数函数有关的复合型函数的单调性
会解决与指数函数有关的实际问题
... ... ...
指数函数PPT,第二部分内容:讲练互动
利用指数函数的单调性比较大小
比较下列各组数的大小:
(1)1.52.5和1.53.2;
(2)0.6-1.2和0.6-1.5;
(3)1.70.2和0.92.1.
【解】(1)1.52.5,1.53.2可看作函数y=1.5x的两个函数值,由于底数1.5>1,
所以函数y=1.5x在R上是增函数,
因为2.5<3.2,所以1.52.5<1.53.2.
(2)0.6-1.2,0.6-1.5可看作函数y=0.6x的两个函数值,
因为0<0.6<1,
所以函数y=0.6x在R上是减函数,
因为-1.2>-1.5,所以0.6-1.2<0.6-1.5.
(3)由指数函数性质得,1.70.2>1.70=1,0.92.1<0.90=1,
所以1.70.2>0.92.1.
比较幂值大小的三种类型及处理方法
解简单的指数方程与指数不等式
求满足下列条件的x的取值范围.
(1)3x-1>9x;
(2)a-5x>ax+7(a>0,且a≠1).
(1)指数方程的类型可分为:
①形如af(x)=ag(x)(a>0,且a≠1)的方程化为f(x)=g(x)求解;
②形如a2x+b•ax+c=0(a>0,且a≠1)的方程,用换元法求解.
(2)指数不等式的类型为af(x)>ag(x)(a>0,且a≠1).
①当a>1时,f(x)>g(x);
发布于:2020-05-03 14:11:52
0
人教版高中数学必修一A版
《对数函数》指数函数与对数函数PPT(第1课时对数函数的概念、图象及性质)
第一部分内容:学习目标
理解对数函数的概念,会判断对数函数
初步掌握对数函数的图象和性质
能利用对数函数的性质解决与之有关的定义域问题
... ... ...
指数函数与对数函数PPT,第二部分内容:自主学习
预习教材P130-P135,并思考以下问题:
1.对数函数的概念是什么?它的解析式具有什么特点?
2.对数函数的图象是什么形状?你能画出y=log2x与y=log12x的图象吗?
3.通过对数函数的图象,你能观察到函数的哪些性质?
1.对数函数的概念
一般地,函数y=____________________叫做对数函数,其中____是自变量,函数的定义域是__________.
■名师点拨
在对数函数的定义表达式y=logax(a>0,且a≠1)中,logax前边的系数必须是1,自变量x在真数的位置上,否则就不是对数函数.
2.对数函数的图象及性质
■名师点拨
发布于:2020-05-03 14:11:52
0
人教版高中数学必修一A版
《对数函数》指数函数与对数函数PPT(第2课时对数函数及其性质的应用)
第一部分内容:学习目标
利用对数的性质及对数函数的单调性比较大小
会利用对数函数的单调性求解不等式
会求与对数函数有关的复合型函数的单调性
会利用对数函数的单调性及换元法求
解与对数函数有关的值域或最值问题
... ... ...
对数函数PPT,第二部分内容:讲练互动
比较对数值的大小
比较下列各组中两个值的大小.
(1)ln0.3,ln2;
(2)loga3.1,loga5.2(a>0,a≠1);
(3)log30.2,log40.2;
(4)log3π,logπ3.
【解】(1)因为函数y=lnx是增函数,且0.3<2,
所以ln0.3<ln2.
(2)当a>1时,函数y=logax在(0,+∞)上是增函数,又3.1<5.2,
所以loga3.1<loga5.2;
当0<a<1时,函数y=logax在(0,+∞)上是减函数.又3.1<5.2,
所以loga3.1>loga5.2.
比较对数值大小时常用的四种方法
(1)同底数的利用对数函数的单调性.
(2)同真数的利用对数函数的图象或用换底公式转化.
(3)底数和真数都不同,找中间量.
(4)若底数为同一参数,则根据底数对对数函数单调性的影响,对底数进行分类讨论.
解对数不等式
解下列不等式:
(1)log17x>log17(4-x);
(2)logx12>1;
(3)loga(2x-5)>loga(x-1).
两类对数不等式的解法
(1)形如logaf(x) ①当0g(x)>0; ②当a>1时,可转化为0 (2)形如logaf(x) ①当0ab; ②当a>1时,可转化为0 [注意] 解决与对数函数相关的问题时要遵循“定义域优先”原则. ... ... ... 对数函数PPT,第三部分内容:达标反馈 1.函数y=2+log2x(x≥2)的值域为( ) A.(3,+∞)B.(-∞,3) C.[3,+∞)D.(-∞,3] 2.函数y=lg|x|是( ) A.偶函数,且在区间(-∞,0)上单调递增 B.偶函数,且在区间(-∞,0)上单调递减 C.奇函数,且在区间(0,+∞)上单调递增 D.奇函数,且在区间(0,+∞)上单调递减
发布于:2020-05-03 14:11:52
0
人教版高中数学必修一A版
《章末复习提升课》函数的概念与性质PPT
函数的定义域和值域
(1)函数f(x)=3x21-x+(3x-1)0的定义域是( )
A.-∞,13
B.13,1
C.-13,13
D.-∞,13∪13,1
(2)已知函数y=f(x+1)的定义域是[-2,3],则y=f(2x-1)的定义域是( )
A.0,52 B.[-1,4]
C.[-5,5] D.[-3,7]
(3)求下列函数的值域:
①y=2x+1x-3;
②y=x+41-x;
③y=1x-2x,x∈-2,-12.
求函数定义域的类型与方法
(1)已给出函数解析式:函数的定义域是使解析式有意义的自变量的取值集合.
(2)实际问题:求函数的定义域既要考虑解析式有意义,还应考虑使实际问题有意义.
(3)复合函数问题:
①若f(x)的定义域为[a,b],f(g(x))的定义域应由a≤g(x)≤b解出;
②若f(g(x))的定义域为[a,b],则f(x)的定义域为g(x)在[a,b]上的值域.
[注意] (1)f(x)中的x与f(g(x))中的g(x)地位相同.
(2)定义域所指永远是自变量的范围.
1.设函数f(x)的定义域为[1,5],则函数f(2x-3)的定义域为( )
A.[2,4]B.[3,11]
C.[3,7]D.[1,5]
2.设函数f(x)=-2x2+4x在区间[m,n]上的值域是[-6,2],则m+n的取值范围是________.
函数的解析式
(1)已知f(x+1)=x2-5x+4,则f(x)=________.
(2)已知函数f(x)是定义在R上的奇函数,当x>0时,f(x)=x2-2x+3.
①求出函数f(x)在R上的解析式;
②写出函数的单调区间(写出即可,不需要证明).
求函数解析式的题型与相应的解法
(1)已知形如f(g(x))的解析式求f(x)的解析式,使用换元法或配凑法.
(2)已知函数的类型(往往是一次函数或二次函数),使用待定系数法.
(3)含f(x)与f(-x)或f(x)与f1x,使用解方程组法.
(4)已知一个区间的解析式,求另一个区间的解析式,可用奇偶性转移法.
... ... ...
《章末复习提升课》平面向量初步PPT 综合提高 平面向量的有关概念 例1 给出下列命题: ①有向线段就是向量,向量就是有向线段; ②向量a与向量b平行,则a与b的方向相同或相反; ③向..
《章末复习提升课》统计与概率PPT 综合提高 抽样方法 例1 (1)在简单随机抽样中,某一个个体被抽到的可能性( ) A.与第几次抽样有关,第一次被抽到的可能性最大 B.与第几次抽样有关,..
《章末复习提升课》指数函数、对数函数与幂函数PPT课件 综合提高 指数、对数的运算 例1 化简:(1)(8) -23(3102)92105; (2)2log32-log3329+log38-25log53. 规律方法 指数、对数的..
发布于:2020-05-03 14:11:51
0
人教版高中数学必修一A版